129 resultados para agricultural economics
Resumo:
Executive summary. In this report we analyse implementation costs and benefits for agricultural management practices, grouped into farming systems. In order to do so, we compare plot scale gross margins for the dominant agricultural production systems (sugarcane, grazing and banana cultivation) in the NRM regions Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. Furthermore, where available, we present investment requirements for changing to improved farming systems. It must be noted that transaction costs are not captured within this project. For sugarcane, this economic analysis shows that there are expected benefits to sugarcane growers in the different regions through transitions to C and B class farming systems. Further transition to A-class farming systems can come at a cost, depending on the capital investment required and the length of the investment period. Obviously, the costs and benefits will vary for each individual grower and will depend on their starting point and individual property scenario therefore each circumstance needs to be carefully considered before making a change in management practice. In grazing, overall, reducing stocking rates comes at a cost (reduced benefits). However, when operating at low utilisation rates in wetter country, lowering stocking rates can potentially come at a benefit. With win-win potential, extension is preferred to assist farmer in changing management practices to improve their land condition. When reducing stocking rates comes at a cost, incentives may be applicable to support change among farmers. For banana cultivation, the results indicate that the transition to C and B class management practices is a worthwhile proposition from an economic perspective. For a change from B to A class farming systems however, it is not worthwhile from a financial perspective. This is largely due to the large capital investment associated with the change in irrigation system and negative impact in whole of farm gross margin. Overall, benefits will vary for each individual grower depending on their starting point and their individual property scenario. The results presented in this report are one possible set of figures to show the changes in profitability of a grower operating in different management classes. The results in this report are not prescriptive of every landholder. Landholders will have different costs and benefits from transitioning to improved practices, even if similar operations are practiced, hence it is recommended that landholders that are willing to change management undertake their own research and analysis into the expected costs and benefits for their own soil types and property circumstances.
Resumo:
Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond. Keating et al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands. This paper updates the earlier work by Keating et al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a “next generation” framework with improved features and capabilities that allow its use in many diverse topics.
Resumo:
Mangoes consigned to domestic markets suffered from fruit quality problems from 1997 to 2000. A high incidence of disease breakdown and green-ripe fruit resulted in loss of confidence by marketers, and reduced profits for everyone from grower to retailer. The ‘Better Mangoes’ project was initiated to identify where, and why quality was being lost, and to use this information to improve the knowledge and practices of supply chain businesses.
Resumo:
Reliability of supply of feed grain has become a high priority issue for industry in the northern region. Expansion by major intensive livestock and industrial users of grain, combined with high inter-annual variability in seasonal conditions, has generated concern in the industry about reliability of supply. This paper reports on a modelling study undertaken to analyse the reliability of supply of feed grain in the northern region. Feed grain demand was calculated for major industries (cattle feedlots, pigs, poultry, dairy) based on their current size and rate of grain usage. Current demand was estimated to be 2.8Mt. With the development of new industrial users (ethanol) and by projecting the current growth rate of the various intensive livestock industries, it was estimated that demand would grow to 3.6Mt in three years time. Feed grain supply was estimated using shire scale yield prediction models for wheat and sorghum that had been calibrated against recent ABS production data. Other crops that contribute to a lesser extent to the total feed grain pool (barley, maize) were included by considering their production relative to the major winter and summer grains, with estimates based on available production records. This modelling approach allowed simulation of a 101-year time series of yield that showed the extent of the impact of inter-annual climate variability on yield levels. Production estimates were developed from this yield time series by including planted crop area. Area planted data were obtained from ABS and ABARE records. Total production amounts were adjusted to allow for any export and end uses that were not feed grain (flour, malt etc). The median feed grain supply for an average area planted was about 3.1Mt, but this varied greatly from year to year depending on seasonal conditions and area planted. These estimates indicated that supply would not meet current demand in about 30% of years if a median area crop were planted. Two thirds of the years with a supply shortfall were El Nino years. This proportion of years was halved (i.e. 15%) if the area planted increased to that associated with the best 10% of years. Should demand grow as projected in this study, there would be few years where it could be met if a median crop area was planted. With area planted similar to the best 10% of years, there would still be a shortfall in nearly 50% of all years (and 80% of El Nino years). The implications of these results on supply/demand and risk management and investment in research and development are briefly discussed.
Resumo:
Weedy Sporobolus grasses have low palatability for livestock, with infestations reducing land condition and pastoral productivity. Control and containment options are available, but the cost of weed control is high relative to the extra return from livestock, thus, limiting private investment. This paper outlines a process for analysing the economic consequences of alternative management options for weedy Sporobolus grasses. This process is applicable to other weeds and other pastoral degradation or development issues. Using a case study property, three scenarios were developed. Each scenario compared two alternative management options and was analysed using discounted cash flow analysis. Two of the scenarios were based on infested properties and one scenario was based on a currently uninfested property but highly likely to become infested without active containment measures preventing weed seed transport and seedling establishment. The analysis highlighted why particular weedy Sporobolus grass management options may not be financially feasible for the landholder with the infestation. However, at the regional scale, the management options may be highly worthwhile due to a reduction in weed seed movement and new weed invasions. Therefore, to encourage investment by landholders in weedy Sporobolus grass management the investment of public money on behalf of landholders with non-infested properties should be considered.
Resumo:
Consumers today are presented with an increasing array of products. The growing competition for consumer expenditure requires a whole of supply chain approach to maintain market share for existing cultivars and to successfully commercialise new cultivars. The supply chain needs to deliver value and satisfaction to the end customer and profitability to their members. Critical to getting the product right is developing inherent robustness into the cultivar, and developing processes and systems through the whole supply chain that maintain product quality and add value. This paper describes the approach we have used in working with supply chains in Australia and Indonesia to identify priority areas for improvement. Our experience demonstrates the need for a champion in the supply chain with significant influence and a desire to improve. The paper also describes our approach towards improving a specific supply chain to achieve successful commercialisation of a new cultivar. The cultivar was primarily selected for good production characteristics and attractive visual appeal. The performance of the fruit is being monitored from farm to retail shelf to identify points where quality is lost and practices can be improved. A targeted R&D program is investigating ways of improving production efficiency (nutrition, flowering and canopy management), maturity standards to optimise flavour, harvesting and packing practices to reduce skin damage, and ripening and handling practices to optimise shelf life. This integrated approach is based on similar approaches used to improve the performance of existing mango and avocado cultivars.
Resumo:
This paper describes adoption rates of environmental assurance within meat and wool supply chains, and discusses this in terms of market interest and demand for certified 'environmentally friendly' products, based on phone surveys and personal interviews with pastoral producers, meat and wool processors, wholesalers and retailers, and domestic consumers. Members of meat and wool supply chains, particularly pastoral producers, are both aware of and interested in implementing various forms of environmental assurance, but significant costs combined with few private benefits have resulted in low adoption rates. The main reason for the lack of benefits is that the end user (the consumer) does not value environmental assurance and is not willing to pay for it. For this reason, global food and fibre supply chains, which compete to supply consumers with safe and quality food at the lowest price, resist public pressure to implement environmental assurance. This market failure is further exacerbated by highly variable environmental and social production standards required of primary producers in different countries, and the disparate levels of government support provided to them. Given that it is the Australian general public and not markets that demand environmental benefits from agriculture, the Australian government has a mandate to use public funds to counter this market failure. A national farm environmental policy should utilise a range of financial incentives to reward farmers for delivering general public good environmental outcomes, with these specified and verified through a national environmental assurance scheme.
Resumo:
The response of soybean (Glycine max) and dry bean (Phaseolus vulgaris) to feeding by Helicoverpa armigera during the pod-fill stage was studied in irrigated field cages over three seasons to determine the relationship between larval density and yield loss, and to develop economic injury levels. H. armigera intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the dry bean experiment, yield loss occurred at a rate 6.00 ± 1.29 g/HIE while the rates of loss in the three soybean experiments were 4.39 ± 0.96 g/HIE, 3.70 ± 1.21 g/HIE and 2.12 ± 0.71 g/HIE. These three slopes were not statistically different (P > 0.05) and the pooled estimate of the rate of yield loss was 3.21 ± 0.55 g/HIE. The first soybean experiment also showed a split-line form of damage curve with a rate of yield loss of 26.27 ± 2.92 g/HIE beyond 8.0 HIE and a rapid decline to zero yield. In dry bean, H. armigera feeding reduced total and undamaged pod numbers by 4.10 ± 1.18 pods/HIE and 12.88 ± 1.57 pods/HIE respectively, while undamaged seed numbers were reduced by 35.64 ± 7.25 seeds/HIE. In soybean, total pod numbers were not affected by H. armigera infestation (out to 8.23 HIE in Experiment 1) but seed numbers (in Experiments 1 and 2) and the number of seeds/pod (in all experiments) were adversely affected. Seed size increased with increases in H. armigera density in two of the three soybean experiments, indicating plant compensatory responses to H. armigera feeding. Analysis of canopy pod profiles indicated that loss of pods occurred from the top of the plant downwards, but with an increase in pod numbers close to the ground at higher pest densities as the plant attempted to compensate for damage. Based on these results, the economic injury levels for H. armigera on dry bean and soybean are approximately 0.74 HIE and 2.31 HIE/m2, respectively (0.67 and 2.1 HIE/row-m for 91 cm rows).
Resumo:
The response of vegetative soybean (Glycine max) to Helicoverpa armigera feeding was studied in irrigated field cages over three years in eastern Australia to determine the relationship between larval density and yield loss, and to develop economic injury levels. Rather than using artificial defoliation techniques, plants were infested with either eggs or larvae of H. armigera, and larvae allowed to feed until death or pupation. Larvae were counted and sized regularly and infestation intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the two experiments where yield loss occurred, the upper threshold for zero yield loss was 7.51 ± 0.21 HIEs and 6.43 ± 1.08 HIEs respectively. In the third experiment, infestation intensity was lower and no loss of seed yield was detected up to 7.0 HIEs. The rate of yield loss/HIE beyond the zero yield loss threshold varied between Experiments 1 and 2 (-9.44 ± 0.80 g and -23.17 ± 3.18 g, respectively). H. armigera infestation also affected plant height and various yield components (including pod and seed numbers and seeds/pod) but did not affect seed size in any experiment. Leaf area loss of plants averaged 841 and 1025 cm2/larva in the two experiments compared to 214 and 302 cm2/larva for cohort larvae feeding on detached leaves at the same time, making clear that artificial defoliation techniques are unsuitable for determining H. armigera economic injury levels on vegetative soybean. Analysis of canopy leaf area and pod profiles indicated that leaf and pod loss occurred from the top of the plant downwards. However, there was an increase in pod numbers closer to the ground at higher pest densities as the plant attempted to compensate for damage. Defoliation at the damage threshold was 18.6 and 28.0% in Experiments 1 and 2, indicating that yield loss from H. armigera feeding occurred at much lower levels of defoliation than previously indicated by artificial defoliation studies. Based on these results, the economic injury level for H. armigera on vegetative soybean is approximately 7.3 HIEs/row-metre in 91 cm rows or 8.0 HIEs/m2.
Resumo:
The proposed simplified Integrated Sugar Production Process (ISPP) using membrane technology would allow the sugar industry to produce new product streams and higher quality mill sugar with increased sugar extraction efficiency. Membrane filtration technology has proven to be a technically sound process to increase sugar quality. However commercial viability has been uncertain partly because the benefits to crystallisation and sugar quality have not outweighed the increased processing cost. This simplified ISPP produces additional value-added liquid streams to make the membrane fractionation process more financially viable and improve the profitability of sugar manufacture. An experimental study used pilot scale membrane fractionation of clarified mill juice confirmed the technical feasibility of separating inorganic salt and antioxidant rich fractions from cane juice. The paper presents details on the compositions of the liquid streams along with their potential uses, values and challenges in getting these products out to market.
Resumo:
Global trends in human population and agriculture dictate that future calls made on the resources (physical, human, financial) and systems involved in producing food will be increasingly more demanding and complex. Both plant breeding and improved agronomy lift the potential yield of crops, a key component in progressing farm yield, so society can reasonably expect both agronomy as a science and agronomists as practitioners to contribute to the successful delivery of necessary change. By reflecting on current trends in agricultural production (diversification, intensification, integration, industrialisation, automation) and deconstructing a futuristic scenario of attempting agricultural production on Mars, it seems the skills agronomists will require involve not only the mandatory elements of their discipline but also additional skills that enable engagement with, even leadership of, teams who integrate (in sum or part) engineering, (agri-)business, economics and operational management, and build the social capital required to create and maintain a diverse array of enhanced and new ethical production systems and achieve increasing efficiencies within them.
Resumo:
Australia has an abundance of native Sapindaceae, with a few species that are considered to have an edible aril. A number of these have minor 'bush food' status but have limited commercial potential. Longan, lychee and rambutan were introduced into Australia from the mid 1800s. Serious commercialization of these crops began from the 1970s when farmers in sub-tropical and tropical regions of Australia were seeking new commercial horticultural opportunities. Currently the value of these industries is in the vicinity of $35 M with lychee the predominate crop followed by longan and rambutan respectively. Despite Australia being a minor producer on the world scale it has contributed significantly to the scientific and production developments through the combined efforts of researchers and innovative growers. This paper details the development and status of the commercial Sapindaceae in Australia and highlights production and research activities.
Resumo:
Temperate species and tropical crop silage are the basis for forage production for the dairy industry in the Australian subtropics. Irrigation is the key resource needed for production, with little survival of temperate species under rain-grown conditions except for lucerne. Annual ryegrass (Lolium multiflorum), fertilised with either inorganic nitrogen or grown with clovers, is the main cool season forage for the dairy industry. It is sown into fully prepared seedbeds, oversown into tropical grasses, especially kikuyu (Pennisetum clandestinum) or sown after mulching. There has been a continual improvement in the performance of annual and hybrid ryegrass cultivars over the last 25 years. In small plot, cutting experiments, yields of annual ryegrass typically range from 15 to 21 t DM/ha, with equivalent on-farm yields of 7 to 14 t DM/ha of utilised material. Rust (Puccinia coronata) remains the major concern although resistance is more stable than in oats. There have also been major improvements in the performance of perennial ryegrass (L. perenne) cultivars although their persistence under grazing is insufficient to make them a reliable forage source for the subtropics. On the other hand, tall fescue (Festuca arundinacea) and prairie grass (Bromus willdenowii) cultivars perform well under cutting and grazing, although farmer resistance to the use of tall fescue is strong. White clover (Trifolium repens) is a reliable and persistent performer although disease usually reduces its performance in the third year after sowing. Persian (Shaftal) annual clover (T. resupinatum) gives good winter production but the performance of berseem clover (T. alexandrinum) is less reliable and the sub clovers (T. subterraneum) are generally not suited to clay soils of neutral to alkaline pH. Lucerne (Medicago sativa), either as a pure stand or in mixtures, is a high producing legume under both irrigation and natural rainfall. Understanding the importance of leaf and crown diseases, and the development of resistant cultivars, have been the reasons for its reliability. Insects on temperate species are not as serious a problem in the subtropics as in New Zealand (NZ). Fungal and viral diseases, on the other hand, cause many problems and forage performance would benefit from more research into resistance.
Resumo:
Manual grading of prawns restricts the number that can be harvested. A restricted harvest size places a limit on the opposing within family and between family sources of selection pressure. A simulation study with inbreeding constrained at 0.5% per generation, a harvest size of 2000, heritability of 0.3, common family environmental effect of 0.1, indicates that maximum response to selection could be achieved with as few as 40 families. Increasing the number of families above 80 may reduce total selection response. It is important to be aware that increasing the number of families may not always yield a greater genetic response.