36 resultados para Vaccine Efficacy
Resumo:
Infectious coryza is an upper respiratory tract disease of chickens with the major impact occurring in multi-age flocks. We investigated the relationship between the level of antibodies, as detected by a haemagglutination-inhibition (HI) assay, in infectious coryza-vaccinated chickens and the protection against challenge in those chickens. In one experiment, chickens given a single dose of either of two infectious coryza vaccines lacked a detectable HI response to vaccination but showed significant levels of protection 11 weeks after vaccination. In contrast, in chickens given two doses of an infectious coryza vaccine and challenged 3 weeks after the second vaccine dose, there was a strong serological response with 36/40 birds having a HI titre of 1/20 or greater. In this trial there was an apparent relationship between titre and subsequent protection, with none of the 32 chickens with a titre of 1/40 or 1/80 showing any clinical signs and only one of the same group yielding the challenge organism on culture. In contrast, three of the four vaccinated chickens with a HI titre less than 1/5 developed the typical clinical signs of coryza and yielded the challenge organism on culture. Overall, our results suggest that HI titres cannot be regarded as a definitive predictor of vaccine efficacy. We suggest that the vaccination-challenge trial is the gold standard for the evaluation of the immune response to infectious coryza vaccines.
Resumo:
A reverse line blot hybridization (RLB) one-stage nested PCR (nPCR) for Anaplasma centrale and a nested PCR for Anaplasma marginale were used to detect infected cattle grazing within an endemic region in Israel. A novel set of PCR primers and oligonucleotide probes based on a 16S ribosomal RNA gene was designed for RLB detection of both Anaplasma species, and the performance of the molecular assays compared. The immunofluorescent antibody test (IFA) was used to detect antibodies to both Anaplasma species, whereas, a highly sensitive and specific competitive enzyme-linked immunosorbent assay (cELISA) was used to detect antibodies in A. centrale-vaccinated cattle. The RLB and the nested PCR procedures showed bacteremia with sensitivity of 50 infected erythrocytes per milliliter. Up to 93% of the A. centrale vaccinates carried specific antibodies that were detected by cELISA, and up to 71% of the vaccinated cattle were found to be naturally infected with A. marginale according to the PCR and the RLB assays. Nevertheless, no severe outbreaks of A. marginale infection occurred among vaccinated herds in this endemic region. It appears that both, molecular tools and serology are useful for evaluation of the vaccine efficacy. In the light of wide natural field infection with A. marginale, strong recommendations to continue the A. centrale vaccination program regime will continue until a new generation of non-blood-based vaccine will be developed.
Resumo:
Bovine genital campylobacteriosis (BGC), caused by Campylobacter fetus subsp. venerealis, is associated with production losses in cattle worldwide. This study aimed to develop a reliable BGC guinea pig model to facilitate future studies of pathogenicity, abortion mechanisms and vaccine efficacy. Seven groups of five pregnant guinea pigs (1 control per group) were inoculated with one of three strains via intra-peritoneal (IP) or intra-vaginal routes. Samples were examined using culture, PCR and histology. Abortions ranged from 0 to 100 and re-isolation of causative bacteria from sampled sites varied with strain, dose of bacteria and time to abortion. Histology indicated metritis and placentitis, suggesting that the bacteria induce inflammation, placental detachment and subsequent abortion. Variation of virulence between strains was observed and determined by culture and abortion rates. IP administration of C. fetus subsp. venerealis to pregnant guinea pigs is a promising small animal model for the investigation of BGC abortion.
Resumo:
Coccidiosis is a costly enteric disease of chickens caused by protozoan parasites of the genus Eimeria. Disease diagnosis and management is complicated since there are multiple Eimeria species infecting chickens and mixed species infections are common. Current control measures are only partially effective and this, combined with concerns over vaccine efficacy and increasing drug resistance, demonstrates a need for improved coccidiosis diagnosis and control. Before improvements can be made, it is important to understand the species commonly infecting poultry flocks in both backyard and commercial enterprises. The aim of this project was to conduct a survey and assessment of poultry Eimeria across Australia using genetic markers, and create a collection of isolates for each Eimeria species. A total of 260 samples (faecal or caecal) was obtained, and survey results showed that Eimeria taxa were present in 98% of commercial and 81% of backyard flocks. The distribution of each Eimeria species was widespread across Australia, with representatives of all species being found in every state and territory, and the Eimeria species predominating in commercial flocks differed from those in backyard flocks. Three operational taxonomic units also occurred frequently in commercial flocks highlighting the need to understand the impact of these uncharacterised species on poultry production. As Eimeria infections were also frequent in backyard flocks, there is a potential for backyard flocks to act as reservoirs for disease, especially as the industry moves towards free range production systems. This Eimeria collection will be an important genetic resource which is the crucial first step in the development of more sophisticated diagnostic tools and the development of new live vaccines which ultimately will provide savings to the industry in terms of more efficient coccidiosis management.
Resumo:
The recombinant Bm86-based tick vaccines have shown their efficacy for the control of cattle ticks, Rhipicephalus (Boophilus) microplus and R. annulatus infestations. However, cattle ticks often co-exist with multi-host ticks such as Hyalomma and Amblyomma species, thus requiring the control of multiple tick infestations for cattle and other hosts. Vaccination trials using a R. microplus recombinant Bm86-based vaccine were conducted in cattle and camels against Hyalomma dromedarii and in cattle against Amblyomma cajennense immature and adult ticks. The results showed an 89% reduction in the number of H. dromedarii nymphs engorging on vaccinated cattle, and a further 32% reduction in the weight of the surviving adult ticks. In vaccinated camels, a reduction of 27% and 31% of tick engorgement and egg mass weight, respectively was shown, while egg hatching was reduced by 39%. However, cattle vaccination with Bm86 did not have an effect on A. cajennense tick infestations. These results showed that Bm86 vaccines are effective against R. microplus and other tick species but improved vaccines containing new antigens are required to control multiple tick infestations. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) ticks cause economic losses for cattle industries throughout tropical and subtropical regions of the world estimated at $US2.5 billion annually. Lack of access to efficacious long-lasting vaccination regimes and increases in tick acaricide resistance have led to the investigation of targets for the development of novel tick vaccines and treatments. In vitro tick feeding has been used for many tick species to study the effect of new acaricides on the transmission of tick-borne pathogens. Few studies have reported the use of in vitro feeding for functional genomic studies using RNA interference and/or the effect of specific anti-tick antibodies. In particular, in vitro feeding reports for the cattle tick are limited due to its relatively short hypostome. Previously published methods were further modified to broaden optimal tick sizes/weights, feeding sources including bovine and ovine serum, optimisation of commercially available blood anti-coagulant tubes, and IgG concentrations for effective antibody delivery. Ticks are fed overnight and monitored for ∼5–6 weeks to determine egg output and success of larval emergence using a humidified incubator. Lithium-heparin blood tubes provided the most reliable anti-coagulant for bovine blood feeding compared with commercial citrated (CPDA) and EDTA tubes. Although >30 mg semi-engorged ticks fed more reliably, ticks as small as 15 mg also fed to repletion to lay viable eggs. Ticks which gained less than ∼10 mg during in vitro feeding typically did not lay eggs. One mg/ml IgG from Bm86-vaccinated cattle produced a potent anti-tick effect in vitro (83% efficacy) similar to that observed in vivo. Alternatively, feeding of dsRNA targeting Bm86 did not demonstrate anti-tick effects (11% efficacy) compared with the potent effects of ubiquitin dsRNA. This study optimises R. microplus tick in vitro feeding methods which support the development of cattle tick vaccines and treatments.
Resumo:
Species of Liposcelis psocids have emerged as major pests of stored grain in Australia in recent years. Several populations have been detected with high resistance to phosphine, the major chemical treatment. Highest resistance has been detected in the cosmopolitan species Liposcelis bostrychophila. As part of a national resistance management strategy to maintain the viability of phosphine, we are developing minimum effective dosage regimes (concentration x time) required to control all life stages of resistant L. bostrychophila at a range of grain temperatures. Four concentrations of phosphine, 0.1, 0.17, 0.3 aid 1 mg/L, were evaluated for their effectiveness against strongly resistant L. bostrychophila at a series of fumigation temperatures: 20, 25, 30 and 35°C. Results were recorded as the least number of days taken to achieve population extinction. We found that, at any fixed concentration of phosphine, time to population extinction decreased as fumigation temperature increased from 20 to 30°C. For example, at 0.1 mg/L, it took more than 14 days at 20°C to completely control these insects, whereas at 30°C it took only seven days. Increase in fumigation temperature from 25OC to 30°C dramatically reduced the exposure period needed to achieve population extinction of resistant psocids. For example, a dose of 0.17 mg/L over six days at 30°C completely controlled strongly resistant L. bostrychophila populations that can survive at 1 mg/L and 25°C over the same exposure period. Findings from our study will be used to formulate recommendations for registered dosage rates and fumigation periods for use in Australia.
Resumo:
Dry-season weight loss in grazing cattle in northern Australia has been attenuated using a number of strategies (Hunter and Vercoe, 1987, Sillence et al. 1993, Gazzola and Hunter, 1999). Furthermore, the potential to improve efficiency of feed utilisation (and thus, dry-season performance) in ruminants through conventional modulation of the insulin-like growth factor (IGF) axis (Oddy and Owens, 1997, Hill et al., 1999) and through immunomodulation of the IGF axis (Hill et al., 1998a,b) has been demonstrated. The present study investigated the use of a vaccine directed against IGFBP-1 in Brahman steers which underwent a period of nutritional restriction followed by a return to wet-season grazing.
Resumo:
Orchard experiments were conducted in southern New South Wales to evaluate the efficacy of multispecies pheromone lures in trapping two economically important species of Carpophilus. Captures of Carpophilus davidsoni Dobson and Carpophilus mutilatus Erichson in traps baited with aggregation pheromones of both species or a three-way lure that also included the pheromone of Carpophilus hemipterus (L.) were not significantly different from captures in traps baited with conspecific pheromones. Carpophilus davidsoni and C. mutilatus were cross-attracted to traps baited with the pheromone of the other species, but numbers were significantly reduced compared with traps baited with conspecific or heterospecific pheromones. Multispecies lures will improve prospects for the commercial use of synthetic aggregation pheromones in Carpophilus beetle management in stone-fruit orchards.
Resumo:
Objective To attenuate two strains of Eimeria tenella by selecting for precocious development and evaluate the strains in characterisation trials and by field evaluation, to choose one precocious line for incorporation into an Australian live coccidiosis vaccine for poultry. Design Two strains from non-commercial flocks were passaged through chickens while selecting for precocious development. Each strain was characterised for drug sensitivity, pathogenicity, protection against homologous and heterologous challenge, and oocyst output in replicated experiments in which the experimental unit was a cage of three birds. Oocyst output and/or body weight gain data collected over a 10 to 12 day period following final inoculation were measured. Feed conversion ratios were also calculated where possible. Results Fifteen passages resulted in prepatent periods reduced by 24 h for the Redlands strain (from 144 h to 120 h)and 23 h for the Darryl strain (from 139 h to 116 h). Characterisation trials demonstrated that each precocious line was significantly less pathogenic than its parent strain and each effectively induced immunity that protected chickens against challenge with both the parent strain and other virulent field strains. Both lines had oocyst outputs that, although significantly reduced relative to the parent strains, remained sufficiently high for commercial vaccine production, and both showed susceptibility to coccidiostats. Conclusion Two attenuated lines have been produced that exhibit the appropriate characteristics for use in an Australian live coccidiosis vaccine.
Resumo:
The immunogenicity of P97 adhesin repeat region R1 (P97R1) of Mycoplasma hyopneumoniae, an important pathogenesis-associated region of P97, was evaluated in mice as a mucosal vaccine. Mice were immunized orally with attenuated Salmonella typhimurium aroA strain CS332 harbouring a eukaryotic or prokaryotic expression vector encoding IP97R1. Local and systemic immune responses were analysed by ELISA on mouse sera, lung washes and splenocyte supernatants following splenocyte stimulation with specific antigens in vitro. Although no P97R1-specific antibody responses were detected in serum and lung washes, significant gamma interferon was produced by P97R1-stimulated splenocytes from mice immunized orally with S. typhimurium aroA harbouring either expression system, indicating induction of a cell-mediated immune response. These results suggested that live bacterial vectors carrying DNA vaccines or expressing heterologous antigens preferentially induce a Th1 response. Surprisingly, however, mice immunized with the vaccine carrier S. typhimurium aroA CS332 induced serum IgG, but not mucosal IgA, against P97R1 or S. typhimurium aroA CS332 whole-cell lysate, emphasizing the importance of assessing the suitability of attenuated S. typhimurium antigen-carrier delivery vectors in the mouse model prior to their evaluation as potential vaccines in the target species, which in this instance was pigs.
Resumo:
Laboratory experiments were conducted to determine the efficacy of spinosad (a biopesticide), chlorpyrifos-methyl (an organophosphorus compound (OP)) and s-methoprene (a juvenile hormone analogue) applied alone and in binary combinations against five stored-grain beetles in wheat. There were three strains of Rhyzopertha dominica, and one strain each of Sitophilus oryzae, Tribolium castaneum, Oryzaephilus surinamensis and Cryptolestes ferrugineus. These strains were chosen to represent a range of possible resistant genotypes, exhibiting resistance to organophosphates, pyrethroids or methoprene. Treatments were applied at rates that are registered or likely to be registered in Australia. Adults were exposed to freshly treated wheat for 2 weeks, and the effects of treatments on mortality and reproduction were determined. No single protectant or protectant combination controlled all insect strains, based on the criterion of >99% reduction in the number of live F1 adults relative to the control. The most effective combinations were spinosad at 1 mg kg-1+chlorpyrifos-methyl at 10 mg kg-1 which controlled all strains except for OP-resistant O. surinamensis, and chlorpyrifos-methyl at 10 mg kg-1+s-methoprene at 0.6 mg kg-1 which controlled all strains except for methoprene-resistant R. dominica. The results of this study demonstrate the difficulty in Australia, and potentially other countries which use protectants, of finding protectant treatments to control a broad range of pest species in the face of resistance development.
Resumo:
A laboratory study was undertaken to determine the persistence and efficacy of spinosad against Rhyzopertha dominica (F.) in wheat stored for 9 months at 30 degrees C and 55 and 70% relative humidity. The aim was to investigate the potential of spinosad for protecting wheat from R. dominica during long-term storage in warm climates. Wheat was treated with spinosad at 0.1, 0.5 and 1 mg kg(-1) grain and sampled after 0, 1.5, 3, 4.5, 6, 7.5 and 9 months of storage for bioassays and residue analyses. Residues were estimated to have declined by 30% during 9 months of storage at 30 degrees C and there was no effect of relative humidity. Spinosad applied at 0.5 or 1 mg kg(-1) was completely effective for 9 months, with 100% adult mortality after 14 days of exposure and no five F, adults produced. Adult mortality was < 100% in some samples of wheat treated with 0.1 mg kg(-1) of spinosad, and live progeny were produced in all samples treated at this level. The results show that spinosad is likely to be an effective grain protectant against R. dominica in wheat stored in warm climates.
Resumo:
The influence of a once only administration of a metabolite of vitamin D3 (HY [middle dot] D(R)-25-hydroxy vitamin D3) on myofibrillar meat tenderness in Australian Brahman cattle was studied. Ninety-six Brahman steers of three phenotypes (Indo-Brazil, US and US/European) and with two previous hormonal growth promotant (HGP) histories (implanted or not implanted with Compudose(R)) were fed a standard feedlot ration for 70 d. Treatment groups of 24 steers were offered daily 10 g/head HY [middle dot] D(R) (125 mg 25-hydroxyvitamin D3) for 6, 4, or 2 d before slaughter. One other group of 24 steers was given the basal diet without HY [middle dot] D(R). Feed lot performance, blood and muscle samples and carcass quality data were collected at slaughter. Calcium, magnesium, potassium, sodium, iron and Vitamin D3 metabolites were measured in plasma and longissimus dorsi muscle. Warner-Bratzler (WB) shear force (peak force, initial yield) and other objective meat quality measurements were made on the longissimus dorsi muscle of each steer after ageing for 1, 7 and 14 d post-mortem at 0-2 [deg]C.There were no significant effects of HY [middle dot] D(R) supplements on average daily gain (ADG, 1.28-1.45 kg/d) over the experimental period. HY [middle dot] D(R) supplements given 6 d prior to slaughter resulted in significantly higher (P (R)) by phenotype/HGP interaction for peak force (P = 0.028), in which Indo-Brazil steers without previous HGP treatment responded positively (increased tenderness) to HY [middle dot] D(R) supplements at 2 d when compared with Indo-Brazil steers previously given HGP. There were no significant effects of treatment on other phenotypes. HY [middle dot] D(R) supplements did not affect muscle or plasma concentrations of calcium, potassium or sodium, but did significantly decrease plasma magnesium and iron concentrations when given 2 d before slaughter. There were no detectable amounts of 25-hydroxyvitamin D3 in the blood or muscle of any cattle at slaughter.
Resumo:
The phase-out of Mulesing by 2010 means the Australian wool industry requires immediate and viable alternatives for the control and prevention of blowfly strike, an economically important parasitic disease of sheep. In this review we have analysed previous research aimed toward the development of a vaccine against blowfly strike and the reasons why the approaches taken were unsuccessful at the time. Close scrutiny has provided new insight into this host-parasite interaction and identified new opportunities for the development of a vaccine. Here we propose that addressing immunosuppression together with the induction of cellular immunity is likely to result in an anti-blowfly strike vaccine, as opposed to the use of "standard" approaches aimed at inducing humoral immunity.