7 resultados para Urban pest management
Resumo:
Efficient crop monitoring and pest damage assessments are key to protecting the Australian agricultural industry and ensuring its leading position internationally. An important element in pest detection is gathering reliable crop data frequently and integrating analysis tools for decision making. Unmanned aerial systems are emerging as a cost-effective solution to a number of precision agriculture challenges. An important advantage of this technology is it provides a non-invasive aerial sensor platform to accurately monitor broad acre crops. In this presentation, we will give an overview on how unmanned aerial systems and machine learning can be combined to address crop protection challenges. A recent 2015 study on insect damage in sorghum will illustrate the effectiveness of this methodology. A UAV platform equipped with a high-resolution camera was deployed to autonomously perform a flight pattern over the target area. We describe the image processing pipeline implemented to create a georeferenced orthoimage and visualize the spatial distribution of the damage. An image analysis tool has been developed to minimize human input requirements. The computer program is based on a machine learning algorithm that automatically creates a meaningful partition of the image into clusters. Results show the algorithm delivers decision boundaries that accurately classify the field into crop health levels. The methodology presented in this paper represents a venue for further research towards automated crop protection assessments in the cotton industry, with applications in detecting, quantifying and monitoring the presence of mealybugs, mites and aphid pests.
Resumo:
Effective pest management relies on accurate delimitation of species and, beyond this, on accurate species identification. Mitochondrial COI sequences are useful for providing initial indications in delimiting species but, despite acknowledged limitations in the method, many studies involving COI sequences and species problems remain unresolved. Here we illustrate how such impasses can be resolved with microsatellite and nuclear sequence data, to assess more directly the amount of gene flow between divergent lineages. We use a population genetics approach to test for random mating between two 8 ± 2% divergent COI lineages of the rusty grain beetle, Cryptolestes ferrugineus (Stephens). This species has become strongly resistant to phosphine, a fumigant used worldwide for disinfesting grain. The possibility of cryptic species would have significant consequences for resistance management, especially if resistance was confined to one mitochondrial lineage. We find no evidence of restricted gene flow or nonrandom mating across the two COI lineages of these beetles, rather we hypothesize that historic population structure associated with early Pleistocene climate changes likely contributed to divergent lineages within this species.
Resumo:
The CQ Cotton Regional Extension project has been a key to the delivery of emerging, cutting edge research information and knowledge to the Central Queensland cotton industry. The direct relevance of southern research to cotton production under the conditions experienced in CQ always has been an issue which could be addressed through regional assessment and adaptation. The project links the national research to the region through development and extension, with a strong focus on the major industry production issues including but not limited to disease, Integrated Pest Management (IPM), soils, nutrition and integrated weed management. Susan Mass has supported the implementation of national industry-wide programs particularly the industry Best Management Practices program (myBMP). This project has successfully transitioned to a focus on delivering national outcomes in target lead areas as part of National Development and Delivery Team established by Cotton CRC, CRDC and Cotton Australia, while maintaining a regional extension presence for Central Queensland cotton & grain farming systems. Susan Mass has very effectively merged and integrated strong regional extension support to cotton growers in Central Queensland with delivery of industry extension priorities across the entire industry in the Development and Delivery Team model. Susan is the target lead for disease and farm hygiene. Recognising the challenges of having regionally relevant research in Central Queensland, this project has facilitated locally based research including boll rot, Bt cotton resistance management, and mealybug biology through strong collaborations. This collaborative approach has included linkage to Department of Environment and Resource Managmeent (DERM) groups and myBMP programs resulting in a high uptake in CQ.
Resumo:
Sulfuryl fluoride (SF), an effective structural fumigant, is registered recently as Profume™ for controlling insect pests of stored grains and processed commodities. Information on its effectiveness in disinfestation of bulk grain, however, is limited. The ongoing problem with the strong level of resistance to phosphine has been addressed recently through deployment of SF as a ‘resistance breaker’ in bulk storages in Australia. This paper discusses important results on the efficacy of SF against key phosphine- resistant insect pests, lesser grain borer, Rhyzopertha dominca, red flour beetle, Tribolium castaneum, rice weevil, Sitophilus oryzae and the rusty grain beetle, Cryptolestes ferrugineus. We have established CT (g-hm3) profiles for SF against these insect pests at two temperature regimes 25 and 30°C, that showed that both temperature and exposure period (t) has significant influence on the effectiveness of SF than the concentration. Over a seven days fumigation period, CTs of 800 and 400 g-hm3 achieved complete control of all the target pests, including the most strongly phosphine - resistant species, C. ferrugineus at 25 and 30°C, respectively. Results from four industry scale field trials involving currently registered rate of SF (1500 g-hm3) over 2–14 d exposure period, confirmed its effectiveness in achieving complete control of the target pest species. The assessment of postfumigation grain samples across all the test storages indicated that the reinfestation occurs after three months. Monitoring resistance to phosphine in C. ferrugineus over a six year period (2009–2015), showed a significant reduction in resistant populations after the introduction of SF into the fumigation strategy at problematic storage sites. Overall our research concludes that SF is a good candidate to be used as a ‘resistance breaker’ where phosphine resistance is prevalent.
Resumo:
Silverleaf whitefly (SLW) is a major late season pest of cotton due to its potential to contaminate cotton lint with honeydew. To prevent this, management is often reliant on the use of insecticides to control SLW populations. With selection pressure SLW develop resistance to insecticides they are exposed to, resulting in spray failures. Our lab tests resistance levels in SLW populations collected from across the cotton industry. In this presentation I will provide an update of emerging SLW resistance issues the cotton industry is facing.
Resumo:
Weed management has become increasingly challenging for cotton growers in Australia in the last decade. Glyphosate, the cornerstone of weed management in the industry, is waning in effectiveness as a result of the evolution of resistance in several species. One of these, awnless barnyard grass, is very common in Australian cotton fields, and is a prime example of the new difficulties facing growers in choosing effective and affordable management strategies. RIM (Ryegrass Integrated Management) is a computer-based decision support tool developed for the south-western Australian grains industry. It is commonly used there as a tool for grower engagement in weed management thinking and strategy development. We used RIM as the basis for a new tool that can fulfil the same types of functions for subtropical Australian cotton-grains farming systems. The new tool, BYGUM, provides growers with a robust means to evaluate five-year rotations including testing the economic value of fallows and fallow weed management, winter and summer cropping, cover crops, tillage, different herbicide options, herbicide resistance management, and more. The new model includes several northernregion- specific enhancements: winter and summer fallows, subtropical crop choices, barnyard grass seed bank, competition, and ecology parameters, and more freedom in weed control applications. We anticipate that BYGUM will become a key tool for teaching and driving the changes that will be needed to maintain sound weed management in cotton in the near future.
Resumo:
Top-predators around the world are becoming increasingly intertwined with humans, sometimes causing conflict and increasing safety risks in urban areas. In Australia, dingoes and dingo � domestic dog hybrids are common in many urban areas, and pose a variety of human health and safety risks. However, data on urban dingo ecology is scant. We GPS-collared 37 dingoes in north-eastern Australia and continuously monitored them each 30 min for 11–394 days. Most dingoes were nocturnal, with an overall mean home range size of 17.47 km2. Overall mean daily distance travelled was 6.86 km/day. At all times dingoes were within 1000 m of houses and buildings. Home ranges appeared to be constrained to patches of suitable vegetation fragments within and around human habitation. These data can be used to reallocate dingo management effort towards mitigating actual conflicts between humans and dingoes in urban areas.