18 resultados para UPPER-HYBRID SOLITONS
Resumo:
The Mt Garnet Landcare Group commissioned a survey of landholders within the Upper Herbert and Upper Burdekin River Catchments to assess the density of native woodlands and to gauge the extent of exotic weed infestation. Twenty-four of 49 landholders responded, representing an area of nearly 500 000 ha or 47% of the total area. Dense native woodland covers 24% (>117 000 ha) of the area surveyed, while a further 30% (140 000 ha) supports moderately dense stands. The dense stands are largely confined to the highly fertile alluvial soils (26% dense woodland) and the lower fertility sandy-surfaced soils (33% or >96 000 ha). Moderate and dense infestations of exotic weeds, principally Lantana camara, occur on 54% (20 000 ha) of alluvial soils and on 13% of sandy-surfaced soils (39 000 ha), where praxelis (Praxelis clematidia) is the major weed. Basaltic soils have low levels of both dense woodland and exotic weed infestation. Some implications of the results are discussed.
Resumo:
Quantitative trait loci (QTL) detection was carried out for adventitious rooting and associated propagation traits in a second-generation outbred Corymbia torelliana x Corymbia citriodora subspecies variegata hybrid family (n=186). The parental species of this cross are divergent in their capacity to develop roots adventitiously on stem cuttings and their propensity to form lignotubers. For the ten traits studied, there was one or two QTL detected, with some QTL explaining large amounts of phenotypic variation (e.g. 66% for one QTL for percentage rooting), suggesting that major effects influence rooting in this cross. Collocation of QTL for many strongly genetically correlated rooting traits to a single region on linkage group 12 suggested pleiotropy. A three locus model was most parsimonious for linkage group 12, however, as differences in QTL position and lower genetic correlations suggested separate loci for each of the traits of shoot production and root initiation. Species differences were thought to be the major source of phenotypic variation for some rooting rate and root quality traits because of the major QTL effects and up to 59-fold larger homospecific deviations (attributed to species differences) relative to heterospecific deviations (attributed to standing variation within species) evident at some QTL for these traits. A large homospecific/heterospecific ratio at major QTL suggested that the gene action evident in one cross may be indicative of gene action more broadly in hybrids between these species for some traits.
Resumo:
Ploidy: triploid interspecific hybrid (3n = 27 chromosomes). Plant: habit prostrate, creeping, type mat-forming, height very short, longevity perennial, spreading laterally by stolons and rhizomes. Stolon: compound nodes with up to 3 leaves, internode length very short, internode thickness very thin, colour grey-brown (RHS N199A) when exposed to sunlight. Culms: length very short. Leaf blade: shape linear-triangular, length short, width narrow, colour dark green (RHS 137B). Ligule: dense row of short white hairs. Inflorescence: digitate with 3(-4) very short spicate racemes, peduncle very short. (All RHS colour chart numbers refer to 2001 edition.) PBR Certificate Number 2641, Application Number 2002/305, granted 24 February 2005.
Resumo:
Spontaneous mutation: In 1996, vegetative material (later designated ‘TL2’) taken from a disease resistant mutant plant on the fifteenth green at Novotel Palm Cove resort course near Cairns was included an on-going program of selection and testing of promising ‘Tifgreen’ mutants by Tropical Lawns Pty Ltd. Selection criteria: healthy vigorous growth during the tropical wet season, dense fine-textured appearance under close mowing, and dark green leaves. In subsequent trials, ‘TL2’ was identified as the outstanding plant among selections of mutant ‘Tifgreen’ genotypes from other north Queensland sites in terms of colour, texture and density for greens use. Propagation: vegetative. Breeder: Terry Anderlini, Gordonvale, QLD. PBR Certificate Number 2639, Application Number 2002/268, granted 24 February 2005.
Resumo:
‘P18’ was first produced in 1992 and is a mutant genotype obtained from a hybrid Bermudagrass line believed to be ‘Tifdwarf’, which was grown in a greenhouse owned by H&H Seed Company in Yuma, Arizona. ‘P18’ was selected for its extremely fine leaf texture, its high shoot density under close mowing, its rapid growth rate, and its uniform dark green colour, and was subsequently evaluated for these traits and characteristics. Propagation: vegetative. Breeder: Howard E. Kaewer, Eden Prairie, MN, USA. PBR Application Number 2007/179, Certificate Number 3567, granted 13 August 2007.
Resumo:
‘AGRD’ was selected by the breeder, Dr Warren Hunt, from a variant area of winter active turf (probably ‘Tifway’ or ‘Tifgreen’) on a Hong Kong Golf Course in Apr 1996. A selection of this material was imported through vegetative quarantine to New Zealand for evaluation. Following a favourable assessment of its potential as a warm-season turfgrass variety under New Zealand conditions made based on its superior comparative performance relative to other Cynodon accessions in glasshouse and field trials, the New Zealand registered variety ‘Grasslands AgRiDark’ was released in 1999. PBR Certificate Number 3716, Application Number 2004/299, granted 20 January 2009.
Resumo:
Salinity is an increasingly important issue in both rural and urban areas throughout much of Australia. The use of recycled/reclaimed water and other sources of poorer quality water to irrigate turf is also increasing. Hybrid Bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davey), together with the parent species C. dactylon, are amongst the most widely used warm-season turf grass groups. Twelve hybrid Bermudagrass genotypes and one accession each of Bermudagrass (C. dactylon), African Bermudagrass (C. transvaalensis) and seashore paspalum (Paspalum vaginatum Sw.) were grown in a glasshouse experiment with six different salinity treatments applied hydroponically through the irrigation water (ECW = <0.1, 6, 12, 18, 24 or 30 dSm-1) in a flood-and-drain system. Each pot was clipped progressively at 2-weekly intervals over the 12-week experimental period to determine dry matter production; leaf firing was rated visually on 3 occasions during the last 6 weeks of salinity treatment. At the end of the experiment, dry weights of roots and crowns below clipping height were also determined. Clipping yields declined sharply after about the first 6 weeks of salinity treatment, but then remained stable at substantially lower levels of dry matter production from weeks 8 to 12. Growth data over this final 4-week experimental period is therefore a more accurate guide to the relative salinity tolerance of the 15 entries than data from the preceding 8 weeks. Based on these data, the 12 hybrid Bermudagrass genotypes showed moderate salinity tolerance, with FloraDwarfM, 'Champion Dwarf', NovotekM and 'TifEagle' ranking as the most salt tolerant and 'Patriot', 'Santa Ana', 'Tifgreen' and TifSport M the least tolerant within the hybrid group. Nevertheless, Santa Ana, for example, maintained relatively strong root growth as salinity increased, and so may show better salt tolerance in practice than predicted from the growth data alone. The 12 hybrid Bermudagrasses and the single African Bermudagrass genotype were all ranked above FloraTeXM Bermudagrass in terms of salt tolerance. However, seashore paspalum, which is widely acknowledged as a halophytic species showing high salt tolerance, ranked well above all 14 Cynodon genotypes in terms of salinity tolerance.
Resumo:
Fine-textured hybrid bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] cultivars have been widely used for golf putting greens and lawn bowls greens in warm-climate areas for more than 40 years. During the past decade, the choice of cultivar for professional turfgrass managers has been expanded by a range of secondgeneration hybrid bermudagrasses, which differ from the first-generation cultivars ‘Tifgreen’ and ‘Tifdwarf ’ in their management requirements. In this paper, we present comparative morphological and developmental data for seven cultivars (Champion Dwarf, FloraDwarf, MS-Supreme, Novotek, Tifdwarf, TifEagle, Tifgreen) grown in spaced plant and sward experiments at Cleveland, Australia (27º32’S lat, 153º15’E long, 25 masl). The four ‘ultradwarf ’ cultivars (Champion Dwarf, MS-Supreme, FloraDwarf, TifEagle) showed slower vertical extension and produced fewer inflorescences than Tifdwarf, Tifgreen, and Novotek. However, in terms of the length of stolon internodes and their overall rate of lateral spread, Champion Dwarf, FloraDwarf, and TifEagle were comparable to Tifdwarf; MS-Supreme (with longer internodes) spread faster laterally, though slower than Tifgreen (which had the longest stolon internodes). In unmown swards, the four ultradwarfs produced shorter leaves than Tifgreen, Tifdwarf, and Novotek, but only Champion Dwarf produced significantly narrower leaves than Tifgreen, Tifdwarf, and Novotek, with TifEagle leaves also significantly narrower than those of Tifgreen and Novotek. Minimum threshold temperatures for growth were approximately 9° to 10°C (air temperature) and 15° to 16°C at 10 cm soil depth.
Resumo:
Rooted cutting propagation is widely used for maximising tree yield, quality and uniformity in conjunction with clonal selection. Some eucalypt species are deployed as rooted cuttings but many are considered to difficult to root. This study examined IBA effects on photoinhibition, root formation, mortality and root and shoot development in cuttings of Corymbia torelliana, C. citriodora and their hybrids. IBA had little or no effect on photoinhibition but it had strong, dose-dependent effects on root formation and mortality. IBA frequently increases primary root number of rooted cutting but it did not increase total root weight, length, surface area or volume, possibly because the highest doe (8g IBA/kg IBA/kg powder) caused leaf abscission and sometimes reduced leaf area (by 55-79%)or shoot dry weight (by 40-58%). An intermediate dose (3g IBA/kg powder) most consistnely improved root formation with little or no effect on mortality or shoot development. Across the F1 hybrid families this treatment increased the number of rooted cuttings by 72-121% and more than ddoubled the number of primary roots per rooted cutting (from 1.1-1.7 roots to 3.5-4.1 roots). This simple treatment will facilitate commercial multiplication of superior individuals or selected families of C. torelliana x C. citriodora through a vegetative propagation system.
Resumo:
An efficient regeneration protocol based on organogenesis from cotyledon explants and suitable for gene delivery has been developed for an Australian passionfruit hybrid. Multiple shoots were regenerated from 30-day-old cotyledon explants on Murashige and Skoog (MS) medium containing 6-benzylvaminopurine (BAP) and coconut water. Media pulsing experiments were conducted to investigate the effect on organogenesis of exposure time of the explants to MS containing 10 mu M BAP and 10% (v/v) coconut water, i.e. passionfruit regeneration medium (PRM). Continuous exposure of these explants to PRM maximised the number of shoots produced to 12.1 per explant. However, periods on hormone-free medium improved the appearance of the shoots and increased the number of explants with shoots from 75 to 84.6%. Further, shoots exposed for 7 days to half-strength MS supplemented with 10 mu M NAA (1-napthalene acetic acid) produced twice as many plantlets than those on half-strength MS alone. Transient GUS histochemical assays indicated delivery of the uidA gene via Agrobacterium tumefaciens.
Resumo:
Increased sediment and nutrient losses resulting from unsustainable grazing management in the Burdekin River catchment are major threats to water quality in the Great Barrier Reef Lagoon. To test the effects of grazing management on soil and nutrient loss, five 1 ha mini-catchments were established in 1999 under different grazing strategies on a sedimentary landscape near Charters Towers. Reference samples were also collected from watercourses in the Burdekin catchment during major flow events.Soil and nutrient loss were relatively low across all grazing strategies due to a combination of good cover, low slope and low rainfall intensities. Total soil loss varied from 3 to 20 kg haˉ¹ per event while losses of N and P ranged from 10 to 1900 g haˉ¹ and from 1 to 71 g haˉ¹ per event respectively. Water quality of runoff was considered moderate across all strategies with relatively low levels of total suspended sediment (range: 8-1409 mg lˉ¹), total N (range: 101-4000 ug lˉ¹) and total P (range: 14-609 ug lˉ¹). However, treatment differences are likely to emerge with time as the impacts of the different grazing strategies on land condition become more apparent.Samples collected opportunistically from rivers and creeks during flow events displayed significantly higher levels of total suspended sediment (range: 10-6010 mg lˉ¹), total N (range: 650-6350 ug lˉ¹) and total P (range: 50-1500 ug lˉ¹) than those collected at the grazing trial. These differences can largely be attributed to variation in slope, geology and cover between the grazing trial and different catchments. In particular, watercourses draining hillier, grano-diorite landscapes with low cover had markedly higher sediment and nutrient loads compared to those draining flatter, sedimentary landscapes.These preliminary data suggest that on relatively flat, sedimentary landscapes, extensive cattle grazing is compatible with achieving water quality targets, provided high levels of ground cover are maintained. In contrast, sediment and nutrient loss under grazing on more erodable land types is cause for serious concern. Long-term empirical research and monitoring will be essential to quantify the impacts of changed land management on water quality in the spatially and temporally variable Burdekin River catchment.
Resumo:
Purpose This study investigated how nitrogen (N) nutrition and key physiological processes varied under changed water and nitrogen competition resulting from different weed control and fertilisation treatments in a 2-year-old F1 hybrid (Pinus elliottii Engelm var. elliottii × P. caribaea var. hondurensis Barr. ex Golf.) plantation on a grey podzolic soil type, in Southeast Queensland. Materials and methods The study integrated a range of measures including growth variables (diameter at ground level (DGL), diameter at breast height (DBH) and height (H)), foliar variables (including foliar N concentration, foliar δ13C and δ15N) and physiological variables (including photosynthesis (An), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (WUEi) (A/gs) and xylem pressure potential (ΨXPP)) to better understand the mechanisms influencing growth under different weed control and fertilisation treatments. Five levels of weed control were applied: standard (routine), luxury, intermediate, mechanical and nil weed control, all with routine fertilisation plus an additional treatment, routine weed control and luxury fertilisation. Relative weed cover was assessed at 0.8, 1.1 and 1.6 years after plantation establishment to monitor the effectiveness of weed control treatments. Soil investigation included soil ammonium (NH4 +-N), nitrate (NO3 −-N), potentially mineralizable N (PMN), gravimetric soil moisture content (MC), hot water extractable organic carbon (HWETC), hot water extractable total N (HWETN), total C, total N, stable C isotope composition (δ13C), stable N isotope composition (δ15N), total P and extractable K. Results and discussion There were significant relationships between foliar N concentrations and relative weed cover and between tree growth and foliar N concentration or foliar δ15N, but initial site preparation practices also increased soil N transformations in the planting rows reducing the observable effects of weed control on foliar δ15N. A positive relationship between foliar N concentration and foliar δ13C or photosynthesis indicated that increased N availability to trees positively influenced non-stomatal limitations to photosynthesis. However, trees with increased foliar N concentrations and photosynthesis were negatively related to xylem pressure potential in the afternoons which enhanced stomatal limitations to photosynthesis and WUEi. Conclusions Luxury and intermediate weed control and luxury fertilisation positively influenced growth at early establishment by reducing the competition for water and N resources. This influenced fundamental key physiological processes such as the relationships between foliar N concentration, A n, E, gs and ΨXPP. Results also confirmed that time from cultivation is an important factor influencing the effectiveness of using foliar δ15N as an indicator of soil N transformations.
Resumo:
Purpose We investigated the effects of weed control and fertilization at early establishment on foliar stable carbon (δ13C) and nitrogen (N) isotope (δ15N) compositions, foliar N concentration, tree growth and biomass, relative weed cover and other physiological traits in a 2-year old F1 hybrid (Pinus elliottii var. elliottii (Engelm) × Pinus caribaea var. hondurensis (Barr. ex Golf.)) plantation grown on a yellow earth in southeast Queensland of subtropical Australia. Materials and methods Treatments included routine weed control, luxury weed control, intermediate weed control, mechanical weed control, nil weed control, and routine and luxury fertilization in a randomised complete block design. Initial soil nutrition and soil fertility parameters included (hot water extractable organic carbon (C) and total nitrogen (N), total C and N, C/N ratio, labile N pools (nitrate (NO3 −) and ammonium (NH4 +)), extractable potassium (K+)), soil δ15N and δ13C. Relative weed cover, foliar N concentrations, tree growth rate and physiological parameters including photosynthesis, stomatal conductance, photosynthetic nitrogen use efficiency, foliar δ15N and foliar δ13C were also measured at early establishment. Results and discussion Foliar N concentration at 1.25 years was significantly different amongst the weed control treatments and was negatively correlated to the relative weed cover at 1.1 years. Foliar N concentration was also positively correlated to foliar δ15N and foliar δ13C, tree height, height growth rates and tree biomass. Foliar δ15N was negatively correlated to the relative weed cover at 0.8 and 1.1 years. The physiological measurements indicated that luxury fertilization and increasing weed competition on these soils decreased leaf xylem pressure potential (Ψxpp) when compared to the other treatments. Conclusions These results indicate how increasing N resources and weed competition have implications for tree N and water use at establishment in F1 hybrid plantations of southeast Queensland, Australia. These results suggest the desirability of weed control, in the inter-planting row, in the first year to maximise site N and water resources available for seedling growth. It also showed the need to avoid over-fertilisation, which interfered with the balance between available N and water on these soils.
Resumo:
ICRISAT scientists, working with Indian programme counterparts, developed the world's first cytoplasmic-nuclear male sterility (CMS)-based commercial hybrid in a food legume, the pigeonpea [Cajanus cajan (L.) Millsp.]. The CMS, in combination with natural outcrossing of the crop, was used to develop viable hybrid breeding technology. Hybrid ICPH 2671 recorded 47% superiority for grain yield over the control variety ‘Maruti’ in multilocation on-station testing for 4 years. In the on-farm trials conducted in five Indian states, mean yield of this hybrid (1396 kg/ha) was 46.5% greater than that of the popular cv. ‘Maruti’ (953 kg/ha). Hybrid ICPH 2671 also exhibited high levels of resistance to Fusarium wilt and sterility mosaic diseases. The outstanding performance of this hybrid has led to its release for cultivation in India by both a private seed company (as ‘Pushkal’) and a public sector university (as ‘RV ICPH 2671’). Recent developments in hybrid breeding technology and high yield advantages realized in farmers' fields have given hope for a breakthrough in pigeonpea productivity.
Resumo:
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm 615 cm, 25 cm 617 cm, 25 cm 619 cm, 25 cm 621 cm, and 25 cm 623 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm615 cm to 25 cm623 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm617 cm to 25 cm623 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm 617 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm617 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice