16 resultados para Streptococcus do grupo B
Resumo:
Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae.
Resumo:
Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae.
Resumo:
Ninety-three giant Queensland grouper, Epinephelus lanceolatus (Bloch), were found dead in Queensland, Australia, from 2007 to 2011. Most dead fish occurred in northern Queensland, with a peak of mortalities in Cairns in June 2008. In 2009, sick wild fish including giant sea catfish, Arius thalassinus (Ruppell), and javelin grunter, Pomadasys kaakan (Cuvier), also occurred in Cairns. In 2009 and 2010, two disease epizootics involving wild stingrays occurred at Sea World marine aquarium. Necropsy, histopathology, bacteriology and PCR determined that the cause of deaths of 12 giant Queensland grouper, three wild fish, six estuary rays, Dasyatis fluviorum (Ogilby), one mangrove whipray, Himantura granulata (Macleay), and one eastern shovelnose ray, Aptychotrema rostrata (Shaw), was Streptococcus agalactiae septicaemia. Biochemical testing of 34 S.agalactiae isolates from giant Queensland grouper, wild fish and stingrays showed all had identical biochemical profiles. The 16S rRNA gene sequences of isolates confirmed all isolates were S.agalactiae; genotyping of selected S.agalactiae isolates showed the isolates from giant Queensland grouper were serotype Ib, whereas isolates from wild fish and stingrays closely resembled serotype II. This is the first report of S.agalactiae from wild giant Queensland grouper and other wild tropical fish and stingray species in Queensland, Australia.
Resumo:
Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.
Resumo:
In zucchini, the use of row covers until flowering and the insect growth regulator (IGR) pyriproxyfen are effective methods of reducing the number of insects, especially silverleaf whitefly (Bemisia tabaci (Gennadius) Biotype B), on plants. We compared floating row covers (FRCs) up until flowering with silverleaf whitefly (SLW) introduced (FRC + SLW), or not introduced (FRC-only), or with introduction of SLW in open plots (SLW-only), or with introduction of SLW in open plots with IGR (SLW + IGR). FRC increased temperature and humidity compared with the uncovered treatments. Average fruit weight was less (P < 0.01) for the FRC + SLW treatment compared with the other treatments and the percentage of marketable fruit was less for the FRC + SLW than for the other three treatments. This result indicates that the use of either row covers or IGR controls whiteflies, reduces fruit damage and increases the size, weight, and quality of fruit, and may also control other sap-sucking insects. However, if SLW are already present on plants, the use of FRC may reduce predation and favour build up of SLW. Thus, FRC and IGR, if used judiciously, may provide an effective alternative to broad-spectrum pesticides in small-scale cucurbit production.
Resumo:
Small juveniles of the nine species of scombrids in Australian waters are morphologically similar to one another and, consequently, difficult to identify to species level. We show that the sequence of the mitochondrial DNA cytochrome b gene region is a powerful tool for identification of these young fish. Using this method, we identified 50 juvenile scombrids collected from Exmouth Bay, Western Australia. Six species of scombrids were apparent in this sample of fish: narrow-barred Spanish mackerel (Scomberomorus commerson), Indian mackerel (Rastrelliger kanagurta), frigate tuna (Auxis thazard), bullet tuna (Auxis rochei), leaping bonito (Cybiosarda elegans), and kawakawa (Euthynnus affinis). The presence of Indian mackerel, frigate tuna, leaping bonito, and kawakawa is the first indication that coastal waters may be an important spawning habitat for these species, although offshore spawning may also occur. The occurrence of small juvenile S. commerson was predicted from the known spawning patterns of that species, but other mackerel species (Scomberomorus munroi, Scomberomorus queenslandicus, Scomberomorus semifasiciatus) likely to be spawning during the sampling period were not detected among the 50 small juveniles analyzed here.
Resumo:
Data on seasonal population abundance of Bemisia tabaci biotype B (silverleaf whitefly (SLW)) in Australian cotton fields collected over four consecutive growing seasons (2002/2003-2005/2006) were used to develop and validate a multiple-threshold-based management and sampling plan. Non-linear growth trajectories estimated from the field sampling data were used as benchmarks to classify adult SLW field populations into six density-based management zones with associated control recommendations in the context of peak flowering and open boll crop growth stages. Control options based on application of insect growth regulators (IGRs) are recommended for high-density populations (>2 adults/leaf) whereas conventional (non-IGR) products are recommended for the control of low to moderate population densities. A computerised re-sampling program was used to develop and test a binomial sampling plan. Binomial models with thresholds of T=1, 2 and 3 adults/leaf were tested using the field abundance data. A binomial plan based on a tally threshold of T=2 adults/leaf and a minimum sample of 20 leaves at nodes 3, 4 or 5 below the terminal is recommended as the most parsimonious and practical sampling protocol for Australian cotton fields. A decision support guide with management zone boundaries expressed as binomial counts and control options appropriate for various SLW density situations is presented. Appropriate use of chemical insecticides and tactics for successful field control of whiteflies are discussed.
Resumo:
To improve compatibility between chemical and biological controls, the use of selective insecticides such as insect growth regulators (IGRs) is crucial. In cucurbits, the use of pyriproxyfen (an IGR) has been shown by others to be an effective method of reducing the number of sap-sucking insects, especially silverleaf whitefly, Bemisia tabaci (Gennadius) Biotype B (SLW). Therefore, we compared pyriproxyfen and buprofezin (an IGR) with that of no treatment (control) in a bitter melon crop for the control of populations of SLW and for their effects on fruit production. Pyriproxyfen controlled SLW and tended to have heavier fruits than the control treatment and reduced the abundance of nymphs and exuvia. Buprofezin showed no evidence in controlling SLW compared with the pyriproxyfen and control treatments. Neither pyriproxyfen nor buprofezin had any effect on the number of harvested fruit or overall fruit yield, but the average weight per fruit was higher than the control treatment. Pyriproxyfen was effective in controlling whitefly populations in bitter melons, and both pyriproxyfen and buprofezin may have the potential to increase yield. Their longer-term use may increase predation by natural enemies as they are species-specific and could favour build up of natural enemies of SLW. Thus, the judicious use of pyriproxyfen may provide an effective alternative to broad-spectrum insecticides in small-scale cucurbit production.
Resumo:
New efforts at biological control of Miconia calvescens (Melastomataceae) is a serious invader in the tropical Pacific, including the Hawaiian and Tahitian Islands, and currently poses a major threat to native biodiversity in the Wet Tropics of Australia. The species is fleshy-fruited, small-seeded and shade tolerant, and thus has the potential to be dispersed widely and recruit in relatively intact rainforest habitats, displacing native species. Understanding and predicting the rate of spread is critical for the design and implementation of effective management actions. We used an individual-based model incorporating a dispersal function derived from dispersal curves for similar berry-fruited native species, and life-history parameters of fecundity and mortality to predict the spatial structure of a Miconia population after a 30 year time period. We compared the modelled population spatial structure to that of an actual infestation in the rainforests of north Queensland. Our goal was to assess how well the model predicts actual dispersion and to identify potential barriers and conduits to seed movement and seedling establishment. The model overpredicts overall population size and the spatial extent of the actual infestation, predicting individuals to occur at a maximum 1,750 m from the source compared with the maximum distance of any detected individual in the actual infestation of 1,191 m. We identify several characteristic features of managed invasive populations that make comparisons between modelled outcomes and actual infestations difficult. Our results suggest that the model’s ability to predict both spatial structure and spread of the population will be improved by incorporating a spatially explicit element, with dispersal and recruitment probabilities that reflect the relative suitability of different parts of the landscape for these processes. Mikania micrantha H.B.K. (Asteraceae) in Papua New Guinea and Fiji.
Resumo:
Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system, population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.
Resumo:
This study identified Gram-positive bacteria in three sub-tropical marine fish species: Pseudocaranx dentex (silver trevally), Pagrus auratus (snapper) and Mugil cephalus (sea mullet). It further elucidated the role played by fish habitat, fish body part and ambient storage on the composition of the Gram-positive bacteria. A total of 266 isolates of Gram-positive bacteria were identified by conventional biochemical methods, VITEK, PCR using genus- and species-specific primers and/or 16S rRNA gene sequencing. The isolates were found to fall into 13 genera and 30 species. In fresh fish, Staphylococcus epidermidis and Micrococcus luteus were the most frequent isolates. After ambient storage, S. epidermidis, S. xylosus and Bacillus megaterium were no longer present whereas S. warned, B. sphaericus, Brevibacillus borstelensis, Enterococcus faecium and Streptococcus uberis increased in frequency. Micrococcus luteus and S. warned were the most prevalent isolates from P. dentex, while E. faecium and Strep. uberis were the most frequent isolates from P. auratus and M. cephalus. With respect to different parts of the fish body. E. faecium, Strep. uberis and B. sphaericus were the most frequent isolates from the muscles, E. faecium, Strep. uberis from the gills and M. luteus from the gut. This study showed a diversity of Gram-positive bacteria in sub-tropical marine fish; however, their abundance was affected by fish habitat, fish body part and ambient storage.
Resumo:
Aims: To examine the prevalence of bacteriocin production in Streptococcus bovis isolates from Australian ruminants and the feasibility of industrial production of bacteriocin. Methods and Results: Streptococcus bovis strains were tested for production of bacteriocin-like inhibitory substances (BLIS) by antagonism assay against Lactococcus lactis. BLIS production was associated with source animal location (i.e. proximity of other bacteriocin-positive source animals) rather than ruminant species/breed or diet. One bacteriocin showing strong inhibitory activity (Sb15) was isolated and examined. Protein sequence, stability and activity spectrum of this bovicin were very similar to bovicin HC5. Production could be increased through serial culturing, and increased productivity could be partially maintained during cold storage of cultures. Conclusions: BLIS production is geographically widely distributed in Eastern Australia, and it appears that the bacteriocin+ trait is maintained in animals at the same location. The HC5-like bacteriocin, originally identified in North America, is also found in Australia. Production of bacteriocin can be increased through serial culturing. Significance and Impact of the Study: The HC5-like bacteriocins appear to have a broad global distribution. Serial culturing may provide a route towards commercial manufacturing for use in industrial applications, and purified bacteriocin from S. bovis Sb15 could potentially be used to prevent food spoilage or as a feed additive to promote growth in ruminant species.
Resumo:
Drying trials were conducted using two species of plantation grown eucalypt timbers: 19-year-old Eucalyptus cloeziana (Gympie messmate) and 15-year-old Eucalyptus pellita (red mahogany). The objective of this study was to gain an understanding of the drying potential of young plantation grown material using accelerated seasoning methods, a process expected to be critcal to the success of plantation hardwood products entering value added markets. The findings are encouraging, indicating that both species can be dried using conventional drying techniques much faster than industry is currently achieving when drying native forest timber. The results suggest that there is a definite drying time advantatge in vacuum drying over conventional methods for 19-year-old E. cloeziana. The findings have shown that through careful schedule manipulation and adjustment, the grade quality can be optimised to suit the desired expectation. As this study was limited to only a small number of trials, time and quality improvements are expected to be realised for both conventional and vacuum drying methods as more research is conducted.
Resumo:
Laboratory colonies of Bactrocera passiflorae (Froggatt) and B. xanthodes (Broun) were established at Koronivia Research Station, Fiji in 1991. Laboratory rearing of the two economically important species was a prerequisite to studies conducted on protein bait spray and quarantine treatment development. To increase the production of laboratory reared fruit flies for this research and also to have a substitute larval diet available, replicated comparisons of the effectiveness of larval diets were carried out using B. passiflorae and B. xanthodes. The diets compared were pawpaw/bagasse, dehydrated carrot and diets used for culturing Mediterranean fruit fly (Ceratitis capitata Wiedemann), Oriental fruit fly (B. dorsalis Hendel), melon fly (B. cucurbitae Coquillett) and B. latifrons (Hendel), pawpaw diet and breadfruit diet. B. passiflorae and B. xanthodes eggs seeded onto the various diets were allowed to develop into larvae, pupae and adults. The percentage egg hatch, number of pupae recovered, percentage pupal mortality, weight of 100 pupae, number of adults and percentage eclosion were used to determine the effectiveness of the diets. Results showed that pawpaw/bagasse and dehydrated carrot diets performed favorably for both species. The pawpaw diet currently used as standard larval diets for both species is the most readily available and easiest to use. Breadfruit diet was tested on B. xanthodes only and showed that it was a suitable substitute for the pawpaw-based diets. Other larval diets, cassava/pawpaw and banana diets, that have been developed and used in the South Pacific areas are also discussed in this paper. When pawpaw or breadfruit are not available, dehydrated carrot diet may be substituted for fruit-based larval diets.
Resumo:
Mastitis is one of the most economically significant diseases for the dairy industry for backyard farmers in developing countries and high producing herds worldwide. Two of the major factors impeding reduction in the incidence of this disease is [a] the lack of availability of an effective vaccine capable of protecting against multiple etiological agents and [b] propensity of some of the etiological agents to develop persistent antibiotic resistance in biofilms. This is further complicated by the continuing revolving shift in the predominant etiological agents of mastitis, depending upon a multitude of factors such as variability in hygienic practices on farms, easy access leading to overuse of appropriate or inappropriate antibiotics at suboptimal concentrations, particularly in developing countries, and lack of compliance with the recommended treatment schedules. Regardless, Staphylococcus aureus and Streptococcus uberis followed by Escherichia coli, Streptococcus agalactiae has become the predominant etiological agents of bovine mastitis followed Streptococcus agalactiae, Streptococcus dysagalactiae, Klebsiella pneumonia and the newly emerging Mycoplasma bovis. Current approaches being pursued to reduce the negative economic impact of this disease are through early diagnosis of infection, immediate treatment with an antibiotic found to either inhibit or kill the pathogen(s) in vitro using planktonic cultures and the use of the currently marketed vaccines regardless of their demonstrated effectiveness. Given the limitations of breeding programs, including genetic selection to improve resistance against infectious diseases including mastitis, it is imperative to have the availability of an effective broad-spectrum, preferably cross-protective, vaccine capable of protecting against bovine mastitis for reduction in the incidence of bovine mastitis, as well as interrupting the potential cross-species transmission to humans. This overview highlights the major etiological agents, factors affecting susceptibility to mastitis, and the current status of antibiotic-based therapies and prototype vaccine candidates or commercially available vaccines against bovine mastitis as potential preventative strategies. © 2013 Tiwari JG, et al.