54 resultados para Plant production


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The recent summary report of a Department of Energy Workshop on Plant Systems Biology (P.V. Minorsky [2003] Plant Physiol 132: 404-409) offered a welcomed advocacy for systems analysis as essential in understanding plant development, growth, and production. The goal of the Workshop was to consider methods for relating the results of molecular research to real-world challenges in plant production for increased food supplies, alternative energy sources, and environmental improvement. The rather surprising feature of this report, however, was that the Workshop largely overlooked the rich history of plant systems analysis extending over nearly 40 years (Sinclair and Seligman, 1996) that has considered exactly those challenges targeted by the Workshop. Past systems research has explored and incorporated biochemical and physiological knowledge into plant simulation models from a number of perspectives. The research has resulted in considerable understanding and insight about how to simulate plant systems and the relative contribution of various factors in influencing plant production. These past activities have contributed directly to research focused on solving the problems of increasing biomass production and crop yields. These modeling approaches are also now providing an avenue to enhance integration of molecular genetic technologies in plant improvement (Hammer et al., 2002).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exotic plant pests (EPPs) threaten production, market access and sustainability of Australian plant production systems. For the grains industry there are over 600 identified EPPs of which 54 are considered high priority, posing a significant threat. Despite Australia’s geographical isolation and strong quarantine systems, the threat from EPPs has never been higher with the increasing levels of travel and trade, emphasising the need for improving our efforts in prevention, preparedness and surveillance for EPPs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate change projections for Australia predict increasing temperatures, changes to rainfall patterns, and elevated atmospheric carbon dioxide (CO2) concentrations. The aims of this study were to predict plant production responses to elevated CO2 concentrations using the SGS Pasture Model and DairyMod, and then to quantify the effects of climate change scenarios for 2030 and 2070 on predicted pasture growth, species composition, and soil moisture conditions of 5 existing pasture systems in climates ranging from cool temperate to subtropical, relative to a historical baseline. Three future climate scenarios were created for each site by adjusting historical climate data according to temperature and rainfall change projections for 2030, 2070 mid-and 2070 high-emission scenarios, using output from the CSIRO Mark 3 global climate model. In the absence of other climate changes, mean annual pasture production at an elevated CO2 concentration of 550 ppm was predicted to be 24-29% higher than at 380 ppm CO2 in temperate (C-3) species-dominant pastures in southern Australia, with lower mean responses in a mixed C-3/C-4 pasture at Barraba in northern New South Wales (17%) and in a C-4 pasture at Mutdapilly in south-eastern Queensland (9%). In the future climate scenarios at the Barraba and Mutdapilly sites in subtropical and subhumid climates, respectively, where climate projections indicated warming of up to 4.4 degrees C, with little change in annual rainfall, modelling predicted increased pasture production and a shift towards C-4 species dominance. In Mediterranean, temperate, and cool temperate climates, climate change projections indicated warming of up to 3.3 degrees C, with annual rainfall reduced by up to 28%. Under future climate scenarios at Wagga Wagga, NSW, and Ellinbank, Victoria, our study predicted increased winter and early spring pasture growth rates, but this was counteracted by a predicted shorter spring growing season, with annual pasture production higher than the baseline under the 2030 climate scenario, but reduced by up to 19% under the 2070 high scenario. In a cool temperate environment at Elliott, Tasmania, annual production was higher than the baseline in all 3 future climate scenarios, but highest in the 2070 mid scenario. At the Wagga Wagga, Ellinbank, and Elliott sites the effect of rainfall declines on pasture production was moderated by a predicted reduction in drainage below the root zone and, at Ellinbank, the use of deeper rooted plant systems was shown to be an effective adaptation to mitigate some of the effect of lower rainfall.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A small population of tall slender conifers was discovered in 1994 in a deep rainforest canyon of the Wollemi National Park, New SouthWales, Australia. The living trees closely resembled fossils that were more than 65 million years old, and this ‘living fossil’ was recognised as a third extant genus in the Araucariaceae (Araucaria, Agathis and now Wollemia). The species was named the Wollemi pine (W. nobilis). Extensive searches uncovered very few populations, with the total number of adult trees being less than 100. Ex situ collections were quickly established in Sydney as part of the Wollemi Pine Recovery Plan. The majority of the ex situ population was later transferred to our custom-built facility in Queensland for commercial multiplication. Domestication has relied very heavily on the species’ amenability to vegetative propagation because seed collection from the natural populations is dangerous, expensive, and undesirable for conservation reasons. Early propagation success was poor, with only about 25% of cuttings producing roots. However, small increases in propagation success have a very large impact on a domestication program because plant production can be modelled on an exponential curve where each rooted cutting develops into a mother plant that, in turn, provides more rooted cuttings. An extensive research program elevated rooting percentages to greater than 80% and also provided in vitro methods for plant multiplication. These successes have enabled international release of the Wollemi pine as a new and attractive species for ornamental horticulture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize (Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rain fed and irrigated followed by rain fed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This joint DPI/Burdekin Shire Council project assessed the efficacy of a pilot-scale biological remediation system to recover Nitrogen (N) and Phosphorous (P) nutrients from secondary treated municipal wastewater at the Ayr Sewage Treatment Plant. Additionally, this study considered potential commercial uses for by-products from the treatment system. Knowledge gained from this study can provide directions for implementing a larger-scale final effluent treatment protocol on site at the Ayr plant. Trials were conducted over 10 months and assessed nutrient removal from duckweed-based treatments and an algae/fish treatment – both as sequential and as stand-alone treatment systems. A 42.3% reduction in Total N was found through the sequential treatment system (duckweed followed by algae/fish treatment) after 6.6 days Effluent Retention Time (E.R.T.). However, duckweed treatment was responsible for the majority of this nutrient recovery (7.8 times more effective than algae/fish treatment). Likewise, Total P reduction (15.75% reduction after 6.6 days E.R.T.) was twice as great in the duckweed treatment. A phytoplankton bloom, which developed in the algae/fish tanks, reduced nutrient recovery in this treatment. A second trial tested whether the addition of fish enhanced duckweed treatment by evaluating systems with and without fish. After four weeks operation, low DO under the duckweed blanket caused fish mortalities. Decomposition of these fish led to an additional organic load and this was reflected in a breakdown of nitrogen species that showed an increase in organic nitrogen. However, the Dissolved Inorganic Nitrogen (DIN: ammonia, nitrite and nitrate) removal was similar between treatments with and without fish (57% and 59% DIN removal from incoming, respectively). Overall, three effluent residence times were evaluated using duckweed-based treatments; i.e. 3.5 days, 5.5 days and 10.4 days. Total N removal was 37.5%, 55.7% and 70.3%, respectively. The 10.4-day E.R.T. trial, however, was evaluated by sequential nutrient removal through the duckweed-minus-fish treatment followed by the duckweed-plus-fish treatment. Therefore, the 70.3% Total N removal was lower than could have been achieved at this retention time due to the abovementioned fish mortalities. Phosphorous removal from duckweed treatments was greatest after 10.4-days E.R.T. (13.6%). Plant uptake was considered the most important mechanism for this P removal since there was no clay substrate in the plastic tanks that could have contributed to P absorption as part of the natural phosphorous cycle. Duckweed inhibited phytoplankton production (therefore reducing T.S.S) and maintained pH close to neutral. DO beneath the duckweed blanket fell to below 1ppm; however, this did not limit plant production. If fish are to be used as part of the duckweed treatment, air-uplifts can be installed that maintain DO levels without disturbing surface waters. Duckweed grown in the treatments doubled its biomass on average every 5.7 days. On a per-surface area basis, 1.23kg/m2 was harvested weekly. Moisture content of duckweed was 92%, equating to a total dry weight harvest of 0.098kg/m2/week. Nutrient analysis of dried duckweed gave an N content of 6.67% and a P content of 1.27%. According to semi-quantitative analyses, harvested duckweed contained no residual elements from the effluent stream that were greater than ANZECC toxicant guidelines proposed for aquaculture. In addition, jade perch, a local aquaculture species, actively consumed and gained weight on harvested duckweed, suggesting potential for large-scale fish production using by-products from the effluent treatment process. This suggests that a duckweed-based system may be one viable option for tertiary treatment of Ayr municipal wastewater. The tertiary detention lagoon proposed by the Burdekin Shire Council, consisting of six bays approximately 290 x 35 metres (x 1.5 metres deep), would be suitable for duckweed culture with minor modification to facilitate the efficient distribution of duckweed plants across the entire available growing surface (such as floating containment grids). The effluent residence time resulting from this proposed configuration (~30 days) should be adequate to recover most effluent nutrients (certainly N) based on the current trial. Duckweed harvest techniques on this scale, however, need to be further investigated. Based on duckweed production in the current trial (1.23kg/m2/week), a weekly harvest of approximately 75 000kg (wet weight) could be expected from the proposed lagoon configuration under full duckweed production. A benefit of the proposed multi-bay lagoon is that full lagoon production of duckweed may not be needed to restore effluent to a desirable standard under the present nutrient load, and duckweed treatment may be restricted to certain bays. Restored effluent could be released without risk of contaminating the receiving waterway with duckweed by evacuating water through an internal standpipe located mid-way in the water column.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seed production and soil seed hanks of H. contortus were studied in a subset of treatments within an extensive grazing study conducted in H. contortus pasture in southern Queensland between 1990 and 1996. Seed production of H. contortus in autumn ranged from 260 to 1800 seeds/m2 with much of this variation due to differences in rainfall between years. Seed production was generally higher in the silver-leaved ironbark than in the narrow-leaved ironbark land class and was also influenced by a consistent stocking rate x pasture type interaction. Inflorescence density was the main factor contributing to the variable seed production and was related to the rainfall received during February. The number of seeds per inflorescence was unaffected by seasonal rainfall, landscape position, stocking rate or legume oversowing. Seed viability was related to the rainfall received during March. Soil seed banks in spring varied from 130 to 520 seeds/m2 between 1990 and 1995 with generally more seed present in the silver-leaved ironbark than in the narrow-leaved ironbark land class. There were poor relationships between viable seed production and the size of the soil seed bank, and between the size of the soil seed bank and seedling recruitment. This study indicates that H. contortus has the potential to produce relatively large amounts of seed and showed that the seasonal pattern of rainfall plays a major role in achieving this potential

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Field studies of diuron and its metabolites 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), 3,4-dichlorophenylurea (DCPU) and 3,4-dichloroaniline (DCA) were conducted in a farm soil and in stream sediments in coastal Queensland, Australia. RESULTS: During a 38 week period after a 1.6 kg ha^-1 diuron application, 70-100% of detected compounds were within 0-15 cm of the farm soil, and 3-10% reached the 30-45 cm depth. First-order t1/2 degradation averaged 49 ± 0.9 days for the 0-15, 0-30 and 0-45 cm soil depths. Farm runoff was collected in the first 13-50 min of episodes lasting 55-90 min. Average concentrations of diuron, DCPU and DCPMU in runoff were 93, 30 and 83-825 µg L^-1 respectively. Their total loading in all runoff was >0.6% of applied diuron. Diuron and DCPMU concentrations in stream sediments were between 3-22 and 4-31 µg kg^-1 soil respectively. The DCPMU/diuron sediment ratio was >1. CONCLUSION: Retention of diuron and its metabolites in farm topsoil indicated their negligible potential for groundwater contamination. Minimal amounts of diuron and DCMPU escaped in farm runoff. This may entail a significant loading into the wider environment at annual amounts of application. The concentrations and ratio of diuron and DCPMU in stream sediments indicated that they had prolonged residence times and potential for accumulation in sediments. The higher ecotoxicity of DCPMU compared with diuron and the combined presence of both compounds in stream sediments suggest that together they would have a greater impact on sensitive aquatic species than as currently apportioned by assessments that are based upon diuron alone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are two major pests of sorghum in Australia, the sorghum midge, Stenodiplosis sorghicola (Coquillett), and the corn earworm, Helicoverpa armigera (Hübner). During the past 10 years the management of these pests has undergone a revolution, due principally to the development of sorghum hybrids with resistance to sorghum midge. Also contributing has been the adoption of a nucleopolyhedrovirus for the management of corn earworm. The practical application of these developments has led to a massive reduction in the use of synthetic insecticides for the management of major pests of sorghum in Australia. These changes have produced immediate economic, environmental and social benefits. Other flow-on benefits include providing flexibility in planting times, the maintenance of beneficial arthropods and utilisation of sorghum as a beneficial arthropod nursery, a reduction in midge populations and a reduction in insecticide resistance development in corn earworm. Future developments in sorghum pest management are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Queensland the subtropical strawberry ( Fragaria * ananassa) breeding program aims to combine traits into novel genotypes that increase production efficiency. The contribution of individual plant traits to cost and income under subtropical Queensland conditions was investigated, with the overall goal of improving the profitability of the industry through the release of new strawberry cultivars. The study involved specifying the production and marketing system using three cultivars of strawberry that are currently widely grown annually in southeast Queensland, developing methods to assess the economic impact of changes to the system, and identifying plant traits that influence outcomes from the system. From May through September P (price; $ punnet -1), V (monthly mass; tonne of fruit on the market) and M (calendar month; i.e. May=5) were found to be related ( r2=0.92) by the function (SE) P=4.741(0.469)-0.001630(0.0005) V-0.226(0.102) M using data from 2006 to 2010 for the Brisbane central market. Both income and cost elements in the gross margin were subject to sensitivity analysis. 'Harvesting' and 'Handling/Packing' 'Groups' of 'Activities' were the major contributors to variable costs (each >20%) in the gross margin analysis. Within the 'Harvesting Group', the 'Picking Activity' contributed most (>80%) with the trait 'display of fruit' having the greatest (33%) influence on the cost of the 'Picking Activity'. Within the 'Handling/Packing Group', the 'Packing Activity' contributed 50% of costs with the traits 'fruit shape', 'fruit size variation' and 'resistance to bruising' having the greatest (12-62%) influence on the cost of the 'Packing Activity'. Non-plant items (e.g. carton purchases) made up the other 50% of the costs within the 'Handling/Packing Group'. When any of the individual traits in the 'Harvesting' and 'Handling/Packing' groups were changed by one unit (on a 1-9 scale) the gross margin changed by up to 1%. Increasing yield increased the gross margin to a maximum (15% above present) at 1320 g plant -1 (94% above present). A 10% redistribution of total yield from September to May increased the gross margin by 23%. Increasing fruit size increased gross margin: a 75% increase in fruit size (to ~30 g) produced a 22% increase in the gross margin. The modified gross margin analysis developed in this study allowed simultaneous estimation of the gross margin for the producer and gross value of the industry. These parameters sometimes move in opposite directions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Propagation of subtropical eucalypts is often limited by low production of rooted cuttings in winter. This study tested whether changing the temperature of Corymbia citriodora and Eucalyptus dunnii stock plants from 28/23A degrees C (day/night) to 18/13A degrees C, 23/18A degrees C or 33/28A degrees C affected the production of cuttings by stock plants, the concentrations of Ca and other nutrients in cuttings, and the subsequent percentages of cuttings that formed roots. Optimal temperatures for shoot production were 33/28A degrees C and 28/23A degrees C, with lower temperatures reducing the number of harvested cuttings. Stock plant temperature regulated production of rooted cuttings, firstly by controlling shoot production and, secondly, by affecting the ensuing rooting percentage. Shoot production was the primary factor regulating rooted cutting production by C. citriodora, but both shoot production and root production were key determinants of rooted cutting production in E. dunnii. Effects of lower stock plant temperatures on rooting were not the result of reduced Ca concentration, but consistent relationships were found between adventitious root formation and B concentration. Average rooting percentages were low (1-15% for C. citriodora and 2-22% for E. dunnii) but rooted cutting production per stock plant (e.g. 25 for C. citriodora and 52 for E. dunnii over 14 weeks at 33/28A degrees C) was sufficient to establish clonal field tests for plantation forestry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Queensland the subtropical strawberry (Fragaria ×ananassa) breeding program aims to combine traits into new genotypes that increase production efficiency. The contribution of individual plant traits to cost and income under subtropical Queensland conditions has been investigated. The study adapted knowledge of traits and the production and marketing system to assess the economic impact (gross margin) of new cultivars on the system, with the overall goal of improving the profitability of the industry through the release of new strawberry cultivars. Genotypes varied widely in their effect on gross margin, from 48% above to 10% below the base value. The advantage of a new genotype was also affected by the proportion of total area allocated to the new genotype. The largest difference in gross margin between that at optimum allocation (8% increase in gross margin) and an all of industry allocation (20% decrease in gross margin) of area to the genotype was 28%. While in other cases the all of industry allocation was also the optimum allocation, with one genotype giving a 48% benefit in gross margin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decision-making in agriculture is carried out in an uncertain environment with farmers often seeking information to reduce risk. As a result of the extreme variability of rainfall and stream-flows in north-eastern Australia, water supplies for irrigated agriculture are a limiting factor and a source of risk. The present study examined the use of seasonal climate forecasting (SCF) when calculating planting areas for irrigated cotton in the northern Murray Darling Basin. Results show that minimising risk by adjusting plant areas in response to SCF can lead to significant gains in gross margin returns. However, how farmers respond to SCF is dependent on several other factors including irrigators’ attitude towards risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Northern Australian dairy farms have a large area of tropical dryland grass pasture available for use as summer pastures. Late summer-autumn in sub-tropical Australia is traditionally a difficult period in which to produce milk because of the decline in both quality and quantity of tropical grasses (Ehrlich et al. 1994). Options to improve autumn feed on dairy farms include introducing forage crops and conservation, increasing concentrate feeding and introducing legumes. Perennial tropical legumes have not been successful at this time of year because of their inability to sustain stocking rates above one cow/ha. This experiment, conducted on farms, was designed to test if annual crop legumes could be successfully oversown into tropical grass areas using minimal till methods to measure the subsequent impact on milk production on farms. Previous experiments using annual legumes in plots at Mutdapilly Research Station had demonstrated yields up to 10 t/ha can be achieved using annual tropical legumes with protein levels as high as 20% in the whole legume plant. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prediction of the initiation, appearance and emergence of leaves is critically important to the success of simulation models of crop canopy development and some aspects of crop ontogeny. Data on leaf number and crop ontogeny were collected on five cultivars of maize differing widely in maturity and genetic background grown under natural and extended photoperiods, and planted on seven sowing dates from October 1993 to March 1994 at Gatton, South-east Queensland. The same temperature coefficients were established for crop ontogeny before silking, and the rates of leaf initiation, leaf tip appearance and full leaf expansion, the base, optimum and maximum temperatures for each being 8, 34 and 40 degrees C. After silking, the base temperature for ontogeny was 0 degrees C, but the optimum and maximum temperatures remained unchanged. The rates of leaf initiation, appearance of leaf tips and full leaf expansion varied in a relatively narrow range across sowing times and photoperiod treatments, with average values of 0.040 leaves (degrees Cd)-1, 0.021 leaves (degrees Cd)-1, and 0.019 leaves (degrees Cd)-1, respectively. The relationships developed in this study provided satisfactory predictions of leaf number and crop ontogeny (tassel initiation to silking, emergence to silking and silking to physiological maturity) when assessed using independent data from Gatton (South eastern Queensland), Katherine and Douglas Daly (Northern Territory), Walkamin (North Queensland) and Kununurra (Western Australia).