16 resultados para Non Ideal System
Resumo:
Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5-6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.
Resumo:
A commercial non-specific gas sensor array system was evaluated in terms of its capability to monitor the odour abatement performance of a biofiltration system developed for treating emissions from a commercial piggery building. The biofiltration system was a modular system comprising an inlet ducting system, humidifier and closed-bed biofilter. It also included a gravimetric moisture monitoring and water application system for precise control of moisture content of an organic woodchip medium. Principal component analysis (PCA) of the sensor array measurements indicated that the biofilter outlet air was significantly different to both inlet air of the system and post-humidifier air. Data pre-processing techniques including normalising and outlier handling were applied to improve the odour discrimination performance of the non-specific gas sensor array. To develop an odour quantification model using the sensor array responses of the non-specific sensor array, PCA regression, artificial neural network (ANN) and partial least squares (PLS) modelling techniques were applied. The correlation coefficient (r(2)) values of the PCA, ANN, and PLS models were 0.44, 0.62 and 0.79, respectively.
Resumo:
Experiments involving row spacing and tillage, originally established in Mackay and Ingham in 2001, were planted to a second cycle of sugarcane in 2006 following a soybean break. Despite large yield differences, economic analysis indicated that there would be little difference in gross margins because of the much higher costs of the tilled system. It is concluded that without GPS guidance, as was the case with these experiments, cane yields are likely to be reduced with no tillage but these problems may well be overcome by implementing minimum strategic tillage to remove compaction from the planting row.
Resumo:
Many statistical forecast systems are available to interested users. In order to be useful for decision-making, these systems must be based on evidence of underlying mechanisms. Once causal connections between the mechanism and their statistical manifestation have been firmly established, the forecasts must also provide some quantitative evidence of `quality’. However, the quality of statistical climate forecast systems (forecast quality) is an ill-defined and frequently misunderstood property. Often, providers and users of such forecast systems are unclear about what ‘quality’ entails and how to measure it, leading to confusion and misinformation. Here we present a generic framework to quantify aspects of forecast quality using an inferential approach to calculate nominal significance levels (p-values) that can be obtained either by directly applying non-parametric statistical tests such as Kruskal-Wallis (KW) or Kolmogorov-Smirnov (KS) or by using Monte-Carlo methods (in the case of forecast skill scores). Once converted to p-values, these forecast quality measures provide a means to objectively evaluate and compare temporal and spatial patterns of forecast quality across datasets and forecast systems. Our analysis demonstrates the importance of providing p-values rather than adopting some arbitrarily chosen significance levels such as p < 0.05 or p < 0.01, which is still common practice. This is illustrated by applying non-parametric tests (such as KW and KS) and skill scoring methods (LEPS and RPSS) to the 5-phase Southern Oscillation Index classification system using historical rainfall data from Australia, The Republic of South Africa and India. The selection of quality measures is solely based on their common use and does not constitute endorsement. We found that non-parametric statistical tests can be adequate proxies for skill measures such as LEPS or RPSS. The framework can be implemented anywhere, regardless of dataset, forecast system or quality measure. Eventually such inferential evidence should be complimented by descriptive statistical methods in order to fully assist in operational risk management.
Resumo:
The intent of this study was to design, document and implement a Quality Management System (QMS) into a laboratory that incorporated both research and development (R&D) and routine analytical activities. In addition, it was necessary for the QMS to be easily and efficiently maintained to: (a) provide documented evidence that would validate the system's compliance with a certifiable standard, (b) fit the purpose of the laboratory, (c) accommodate prevailing government policies and standards, and (d) promote positive outcomes for the laboratory through documentation and verification of the procedures and methodologies implemented. Initially, a matrix was developed that documented the standards' requirements and the necessary steps to be made to meet those requirements. The matrix provided a check mechanism on the progression of the system's development. In addition, it was later utilised in the Quality Manual as a reference tool for the location of full procedures documented elsewhere in the system. The necessary documentation to build and monitor the system consisted of a series of manuals along with forms that provided auditable evidence of the workings of the QMS. Quality Management (QM), in one form or another, has been in existence since the early 1900's. However, the question still remains: is it a good thing or just a bugbear? Many of the older style systems failed because they were designed by non-users, fiercely regulatory, restrictive and generally deemed to be an imposition. It is now considered important to foster a sense of ownership of the system by the people who use the system. The system's design must be tailored to best fit the purpose of the operations of the facility if maximum benefits to the organisation are to be gained.
Resumo:
Bovine herpesvirus 1 (BoHV-1) is an economically important pathogen of cattle associated with respiratory and reproductive disease. To further develop BoHV-1 as a vaccine vector, a study was conducted to identify the essential and non-essential genes required for in vitro viability. Randominsertion mutagenesis utilizing a Tn5 transposition system and targeted gene deletion were employed to construct gene disruption and gene deletion libraries, respectively, of an infectious clone of BoHV-1. Transposon insertion position and confirmation of gene deletion were determined by direct sequencing. The essential or non-essential requirement of either transposed or deleted open reading frames (ORFs) was assessed by transfection of respective BoHV-1 DNA into host cells. Of the 73 recognized ORFs encoded by the BoHV-1 genome, 33 were determined to be essential and 36 to be non-essential for virus viability in cell culture; determining the requirement of the two dual copy ORFs was inconclusive. The majority of ORFs were shown to conform to the in vitro requirements of BoHV-1 homologues encoded by human herpesvirus 1 (HHV-1). However, ORFs encoding glycoprotein K (UL53), regulatory, membrane, tegument and capsid proteins (UL54, UL49.5, UL49, UL35, UL20, UL16 and UL7) were shown to differ in requirement when compared to HHV-1-encoded homologues.
Resumo:
Remote drafting technology now available for sheep makes possible targeted supplementation of individuals within a grazing flock. This system was evaluated by using 68 Merino wethers grazing dry-season, native Mitchell grass pasture (predominantly Astrebla spp.) as a group and receiving access to lupin grain through a remote drafter 0, 1, 2, 4 or 7 days/week for 8 weeks. The sole paddock watering point was separately fenced and access was via a one-way flow gate. Sheep exited the watering point through a remote drafter operated by solar power and were drafted by radio frequency identification (RFID) tag, according to treatment, either back into the paddock or into a common supplement yard where lupins were provided ad libitum in a self-feeder. Sheep were drafted into the supplement yard on only their first time through the drafter during the prescribed 24-h period and exited the supplement yard via one-way flow gates in their own time. The remote drafter operated with a high accuracy, with only 2.1% incorrect drafts recorded during the experimental period out of a total of 7027 sheep passes through the remote drafter. The actual number of accesses to supplement for each treatment group, in order, were generally less than that intended, i.e. 0.02, 0.69, 1.98, 3.35 and 6.04 days/week. Deviations from the intended number of accesses to supplement were mainly due to sheep not coming through to water on their allocated day of treatment access, although some instances were due to incorrect drafts. There was a non-linear response in growth rate to increased frequency of access to lupins with the growth rate response plateauing at similar to 3 actual accesses per week, corresponding to a growth rate of 72.5 g/head. day. This experiment has demonstrated the application of the remote drafting supplementation system for the first time under grazing conditions and with the drafter operated completely from solar power. The experiment demonstrates a growth response to increasing frequency of access to supplement and provides a starting point with which to begin to develop feeding strategies to achieve sheep weight-change targets.
Resumo:
It has been reported that high-density planting of sugarcane can improve cane and sugar yield through promoting rapid canopy closure and increasing radiation interception earlier in crop growth. It is widely known that the control of adverse soil biota through fumigation (removes soil biological constraints and improves soil health) can improve cane and sugar yield. Whether the responses to high-density planting and improved soil health are additive or interactive has important implications for the sugarcane production system. Field experiments established at Bundaberg and Mackay, Queensland, Australia, involved all combinations of 2-row spacings (0.5 and 1.5 m), two planting densities (27 000 and 81 000 two-eyed setts/ha), and two soil fumigation treatments (fumigated and non-fumigated). The Bundaberg experiment had two cultivars (Q124, Q155), was fully irrigated, and harvested 15 months after planting. The Mackay experiment had one cultivar (Q117), was grown under rainfed conditions, and harvested 10 months after planting. High-density planting (81 000 setts/ha in 0.5-m rows) did not produce any more cane or sugar yield at harvest than low-density planting (27 000 setts/ha in 1.5-m rows) regardless of location, crop duration (15 v. 10 months), water supply (irrigated v. rainfed), or soil health (fumigated v. non-fumigated). Conversely, soil fumigation generally increased cane and sugar yields regardless of site, row spacing, and planting density. In the Bundaberg experiment there was a large fumigation x cultivar x density interaction (P<0.01). Cultivar Q155 responded positively to higher planting density in non-fumigated soil but not in fumigated soil, while Q124 showed a negative response to higher planting density in non-fumigated soil but no response in fumigated soil. In the Mackay experiment, Q117 showed a non-significant trend of increasing yield in response to increasing planting density in non-fumigated soil, similar to the Q155 response in non-fumigated soil at Bundaberg. The similarity in yield across the range of row spacings and planting densities within experiments was largely due to compensation between stalk number and stalk weight, particularly when fumigation was used to address soil health. Further, the different cultivars (Q124 and Q155 at Bundaberg and Q117 at Mackay) exhibited differing physiological responses to the fumigation, row spacing, and planting density treatments. These included the rate of tiller initiation and subsequent loss, changes in stalk weight, and propensity to lodging. These responses suggest that there may be potential for selecting cultivars suited to different planting configurations.
Resumo:
Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system, population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.
Resumo:
In parts of Australia, sorghum grain is a cheaper alternative to other cereal grains but its use and nutritive value in sheep feeding systems is not well understood. The aim of this work was to compare growth and carcass characteristics for crossbred lambs consuming several simple, sorghum-based diets. The treatments were: (1) whole sorghum grain, (2) whole sorghum grain + urea and ammonium sulfate, (3) cracked sorghum grain + urea and ammonium sulfate, (4) expanded sorghum grain + urea and ammonium sulfate, (5) whole sorghum grain + cottonseed meal, and (6) whole sorghum grain + whole cottonseed. Nine lambs were slaughtered initially to provide baseline carcass data and the remaining 339 lambs were gradually introduced to the concentrate diets over 14 days before being fed concentrates and wheaten hay ad libitum for 41, 56 or 76 days. Neither cracking nor expanding whole sorghum grain with added non-protein nitrogen (N) resulted in significantly (P > 0.05) increased final liveweight, growth rates or carcass weights for lambs, or in decreased days on feed to reach 18-kg carcass weight, although carcass fat depth was significantly (P < 0.05) increased compared with the whole sorghum plus non-protein N diet. However, expanding sorghum grain significantly (P < 0.05) reduced faecal starch concentrations compared with whole or cracked sorghum diets with added non-protein N (79 v. 189 g/kg DM after 59 days on feed). Lambs fed whole sorghum grain without an additional N source had significantly (P < 0.05) lower concentrate intake and required significantly (P < 0.05) more days on feed to reach a carcass weight of 18 kg than for all diets containing added N. These lambs also had significantly (P < 0.05) lower carcass weight and fat depth than for lambs consuming whole sorghum plus true protein diets. Substituting sources of true protein (cottonseed meal and whole cottonseed) for non-protein N (urea and ammonium sulfate) did not significantly (P > 0.05) affect concentrate intakes or carcass weights of lambs although carcass fat depth was significantly (P < 0.05) increased and the days to reach 18-kg carcass weight were significantly (P < 0.05) decreased for the whole sorghum plus cottonseed meal diet. In conclusion, processing sorghum grain by cracking or expanding did not significantly improve lamb performance. While providing an additional N source with sorghum grain significantly increased lamb performance, there was no benefit in final carcass weight of lambs from substituting sources of true protein for non-protein N.
Resumo:
BACKGROUND: The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. RESULTS: It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. CONCLUSION: The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados.
Resumo:
This project aims to determine plant growth response to water treated with the Silverwater disinfestation system against plants that have been irrigated with non treated water. The trial will monitor and measure plant growth rates and health to identify any variations that can be attributed to the Silverwater Technologies disinfestation unit.
Resumo:
Cultural practices alter patterns of crop growth and can modify dynamics of weed-crop competition, and hence need to be investigated to evolve sustainable weed management in dry-seeded rice (DSR). Studies on weed dynamics in DSR sown at different times under two tillage systems were conducted at the Agronomic Research Farm, University of Agriculture, Faisalabad, Pakistan. A commonly grown fine rice cultivar 'Super Basmati' was sown on 15th June and 7th July of 2010 and 2011 under zero-till (ZT) and conventional tillage (CONT) and it was subjected to different durations of weed competition [10, 20, 30, 40, and 50 days after sowing (DAS) and season-long competition]. Weed-free plots were maintained under each tillage system and sowing time for comparison. Grassy weeds were higher under ZT while CONT had higher relative proportion of broad-leaved weeds in terms of density and biomass. Density of sedges was higher by 175% in the crop sown on the 7th July than on the 15th June. Delaying sowing time of DSR from mid June to the first week of July reduced weed density by 69 and 43% but their biomass remained unaffected. Tillage systems had no effect on total weed biomass. Plots subjected to season-long weed competition had mostly grasses while broad-leaved weeds were not observed at harvest. In the second year of study, dominance of grassy weeds was increased under both tillage systems and sowing times. Significantly less biomass (48%) of grassy weeds was observed under CONT than ZT in 2010; however, during 2011, this effect was non-significant. Trianthema portulacastrum and Dactyloctenium aegyptium were the dominant broad-leaved and grassy weeds, respectively. Cyperus rotundus was the dominant sedge weed, especially in the crop sown on the 7th July. Relative yield loss (RYL) ranged from 3 to 13% and 7 to16% when weeds were allowed to compete only for 20 DAS. Under season-long weed competition, RYL ranged from 68 to 77% in 2010 and 74 to80% in 2011. The sowing time of 15th June was effective in minimizing weed proliferation and rectifying yield penalty associated with the 7th July sowing. The results suggest that DSR in Pakistan should preferably be sown on 15th June under CONT systems and weeds must be controlled before 20 DAS to avoid yield losses. Successful adoption of DSR at growers' fields in Pakistan will depend on whether growers can control weeds and prevent shifts in weed population from intractable weeds to more difficult-to-control weeds as a consequence of DSR adoption.
Resumo:
Management of cucumber fly (Bactrocera cucumis) has relied heavily on cover sprays of broad spectrum insecticides such as dimethoate and fenthion. Long term access to these insecticides is uncertain, and their use can disrupt integrated pest management programs for other pests such as whitefly, aphids and mites. Application of a protein bait spray for fruit fly control is common practice in tree crops. However, vegetable crops present different challenges as fruit flies are thought to enter these crops only to oviposit, spending the majority of their time in roosting sites outside of the cropping area. Perimeter baiting of non-crop vegetation was developed overseas as a technique for control of melon fly (B. cucurbitae) in cucurbits in Hawaii. More recent work has refined the technique further, with certain types of perimeter vegetation proving more attractive to melon fly than the sorghum or corn crops which are commonly utilised. Trials were performed to investigate the potential of developing a similar system for cucumber fly. Commercially available fruit fly baits were compared for attractiveness to cucumber fly. Eight plant species were evaluated for their relative attractiveness to cucumber flies as roosting sites. Differences were observed in the number of flies feeding at protein bait applied to each of the plants. Results are discussed in the context of the development of a perimeter baiting system for cucumber fly in cucurbit crops.