64 resultados para Maple Shade
Resumo:
Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.
Resumo:
The establishment of experimental populations of scarab larvae using eggs and early instar larvae has proven to be difficult for many researchers. Despite this, little work has been published examining ways to optimise establishment under artificial conditions. In this experiment, we examined the effect of shade and irrigation on the establishment of Heteronyx piceus Blanchard larvae introduced into pots as eggs and first-, second- and third-instar larvae to optimise artificial infestation techniques. The most important factor affecting larval establishment was the life stage introduced. Establishment of eggs and first instars was very low, with only 21% of eggs and 11% of first-instar larvae establishing. In contrast, 82% of second-instar larvae and 84% of third-instar larvae established successfully. The addition of shade marginally improved overall survival from 45% in the unshaded pots to 53% in the shaded pots. However, most of this increase was in the eggs and first instars. Irrigation did not improve survival. These results suggest that when introducing scarab larvae to field or pot experiments, second- or thirdinstar larvae should be used to maximise establishment. The provision of shade and supplementary irrigation is optional.
Resumo:
In this study, we examined the photosynthetic responses of five common seagrass species from a typical mixed meadow in Torres Strait at a depth of 5–7 m using pulse amplitude modulated (PAM) fluorometry. The photosynthetic response of each species was measured every 2 h throughout a single daily light cycle from dawn (6 am) to dusk (6 pm). PAM fluorometry was used to generate rapid light curves from which measures of electron transport rate (ETRmax), photosynthetic efficiency (α), saturating irradiance (Ek) and light-adapted quantum yield (ΔF/F′m) were derived for each species. The amount of light absorbed by leaves (absorption factor) was also determined for each species. Similar diurnal patterns were recorded among species with 3–4 fold increases in maximal electron rate from dawn to midday and a maintenance of ETRmax in the afternoon that would allow an optimal use of low light by all species. Differences in photosynthetic responses to changes in the daily light regime were also evident with Syringodium isoetifolium showing the highest photosynthetic rates and saturating irradiances suggesting a competitive advantage over other species under conditions of high light. In contrast Halophila ovalis, Halophila decipiens and Halophila spinulosa were characterised by comparatively low photosynthetic rates and minimum light requirements (i.e. low Ek) typical of shade adaptation. The structural makeup of each species may explain the observed differences with large, structurally complex species such as Syringodium isoetifolium and Cymodocea serrulata showing high photosynthetic effciciencies (α) and therefore high-light-adapted traits (e.g. high ETRmax and Ek) compared with the smaller Halophila species positioned lower in the canopy. For the smaller Halophila species these shade-adapted traits are features that optimise their survival during low-light conditions. Knowledge of these characteristics and responses improves our understanding of the underlying causes of changes in seagrass biomass, growth and survival that occur when modifications in light quantity and quality arise from anthropogenic and climatic disturbances that commonly occur in Torres Strait.
Resumo:
Prickly acacia, a Weed of National Significance or WONS, is a serious problem in Queensland particularly the Mitchell grass downs where it was once planted to provide shade for livestock. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and biological control of the weed. Queensland has been trying to achieve biological control of prickly acacia since 1980 when it began foreign exploration in Pakistan. Since then further exploration was undertaken in Kenya, South Africa and presently India. Six insects have been released in Queensland but only two of these are established. Greater emphasis is being placed on climate matching, plant response to herbivory and genotype matching in present work and it is hoped that this approach will allow more rigorous evaluations of agent performance and better understanding of reasons for success or failure of agents.
Resumo:
Background: Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources: The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.
Resumo:
Growers working together have proven to be a successful method for improving the utilization of farm resources and accelerating the adoption of the Sugar Yield Decline Joint Venture principles (SYDJV). The Pinnacle Precision Farming Group was formed in 2004 with the aim to bring together the ideas, knowledge and resources of growers in the Herbert region. Along with their common interest in controlled traffic, minimal tillage and crop rotations, the grower group utilize a farm machinery contractor to provide some of their major farming operations. This paper provides an insight into the changes made by the Pinnacle Precision Farming Group and their journey to adopt the new farming system practices. This paper also details the changes made by the group machinery contractor and a comparison of the old and new farming systems used by a group member. A focus point of the document is the impact of the new farming system on the economic, social and environmental components of the farming business. Analysis of the new farming system with a legume crop rotation revealed an increase in the farm gross margin by AU$22 024 and, in addition, a reduction in tractor operation time by 38% across the whole farm. This represents a return on marginal capital of 14.68 times the original capital outlay required by the group member. Using the new farming system without a legume crop will still improve the group members whole of farm gross margin by AU$6 839 and reduce tractor operation time by 43% across the whole farm. The Pinnacle Precision Farming group recognize the need to continually improve their farming businesses and believe that the new farming system principles are critical for the long term viability of the industry. [U$1 = AU$1.19].
Resumo:
Seven hardwood species were tested as underplants under Pinus elliottii plantations on the coastal lowlands of south-east Queensland. The species tested were: Flindersia brayleyana (F. Muell) (Queensland maple), F. australis (R. Br.), (crow's ash), Swietenia macrophylla (King) (American mahogany), Grevillea robusta (A. cunn) (southern silky oak), Elaeocarpus grandis (F. Muell) (silver quandong), F. ifflaiana (F. Meull) (Cairns hickory) and Ceratopetalum apetalum (D. Don) (coachwood). Most species (except E. grandis) established successfully but slowly. Underplants suffered 9-16% mortality during thinning of the overstorey. By 2004 when aged c. 38 years, four underplanted species; F. brayleyana, S. macrophylla, F. ifflaiana and E. grandis, had attained predominant heights of 20 m and mean diameter at breast height of 25 cm or better. The presence of underplants increased total site productivity by up to 23% and did not have any detrimental effect on the development of the overwood.This experiment has demonstrated that some rainforest species will survive and grow healthily as underplants in exotic pine plantations plus produce small merchantable logs within a 38 year rotation. The results also indicated the importance of correct species selection if an underplanting option is to be pursued as some species have been a complete failure (notably G. robusta).
Resumo:
BACKGROUND: Field studies of diuron and its metabolites 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), 3,4-dichlorophenylurea (DCPU) and 3,4-dichloroaniline (DCA) were conducted in a farm soil and in stream sediments in coastal Queensland, Australia. RESULTS: During a 38 week period after a 1.6 kg ha^-1 diuron application, 70-100% of detected compounds were within 0-15 cm of the farm soil, and 3-10% reached the 30-45 cm depth. First-order t1/2 degradation averaged 49 ± 0.9 days for the 0-15, 0-30 and 0-45 cm soil depths. Farm runoff was collected in the first 13-50 min of episodes lasting 55-90 min. Average concentrations of diuron, DCPU and DCPMU in runoff were 93, 30 and 83-825 µg L^-1 respectively. Their total loading in all runoff was >0.6% of applied diuron. Diuron and DCPMU concentrations in stream sediments were between 3-22 and 4-31 µg kg^-1 soil respectively. The DCPMU/diuron sediment ratio was >1. CONCLUSION: Retention of diuron and its metabolites in farm topsoil indicated their negligible potential for groundwater contamination. Minimal amounts of diuron and DCMPU escaped in farm runoff. This may entail a significant loading into the wider environment at annual amounts of application. The concentrations and ratio of diuron and DCPMU in stream sediments indicated that they had prolonged residence times and potential for accumulation in sediments. The higher ecotoxicity of DCPMU compared with diuron and the combined presence of both compounds in stream sediments suggest that together they would have a greater impact on sensitive aquatic species than as currently apportioned by assessments that are based upon diuron alone.
Resumo:
The first larval instar has been identified as a critical stage for population mortality in Lepidoptera, yet due to the body size of these larvae, the factors that contribute to mortality under field conditions are still not clear. Dispersal behaviour has been suggested as a significant, but ignored factor contributing to mortality in first-instar lepidopteran larvae. The impact that leaving the host plant has on the mortality rate of Helicoverpa armigera neonates was examined in field crops and laboratory trials. In this study the following are examined: (1) the effects of soil surface temperature, and the level of shade within the crop, on the mortality of neonates on the soil after dropping off from the host plant; (2) the percentage of neonates that dropped off from a host plant and landed on the soil; and (3) the effects of exposure to different soil surface temperatures on the development and mortality of neonates. The findings of this study showed that: (1) on the soil, surface temperatures above 43°C were lethal for neonates, and exposure to these temperatures contributed greatly to the overall mortality rate observed; however, the fate of neonates on the soil varied significantly depending on canopy closure within the crop; (2) at least 15% of neonates dropped off from the host plant and landed on the soil, meaning that the proportion of neonates exposed to these condition is not trivial; and (3) 30 min exposure to soil surface temperatures approaching the lethal level (>43°C) has no significant negative effects on the development and mortality of larvae through to the second instar. Overall leaving the plant through drop-off contributes to first-instar mortality in crops with open canopies; however, survival of neonates that have lost contact with a host plant is possible, and becomes more likely later in the crop growing season.
Resumo:
Three anaerobic ponds used to store and treat piggery wastes were fully covered with permeable materials manufactured from polypropylene geofabric, polyethylene shade cloth and supported straw. The covers were assessed in terms of efficacy in reducing odour emission rates over a 40-month period. Odour samples were collected from the surface of the covers, the surface of the exposed liquor and from the surface of an uncovered (control) pond at one of the piggeries. Relative to the emission rate of the exposed liquor at each pond, the polypropylene, shade cloth and straw covers reduced average emission rates by 76%, 69% and 66%, respectively. At the piggery with an uncovered control pond, the polypropylene covers reduced average odour emission rates by 50% and 41%, respectively. A plausible hypothesis, consistent with likely mechanisms for the odour reduction and the olfactometric method used to quantifying the efficacy of the covers, is offered.
Resumo:
An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.
Resumo:
Computer modelling promises to be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The `spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/-50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations.
Resumo:
Miconia calvescens (Melastomataceae) is a serious invader in the tropical Pacific, including the Hawaiian and Tahitian Islands, and currently poses a major threat to native biodiversity in the Wet Tropics of Australia. The species is fleshy-fruited, small-seeded and shade tolerant, and thus has the potential to be dispersed widely and recruit in relatively intact rainforest habitats, displacing native species. Understanding and predicting the rate of spread is critical for the design and implementation of effective management actions. We used an individual-based model incorporating a dispersal function derived from dispersal curves for similar berry-fruited native species, and life-history parameters of fecundity and mortality to predict the spatial structure of a Miconia population after a 30 year time period. We compared the modelled population spatial structure to that of an actual infestation in the rainforests of north Queensland. Our goal was to assess how well the model predicts actual dispersion and to identify potential barriers and conduits to seed movement and seedling establishment. The model overpredicts overall population size and the spatial extent of the actual infestation, predicting individuals to occur at a maximum 1,750 m from the source compared with the maximum distance of any detected individual in the actual infestation of 1,191 m. We identify several characteristic features of managed invasive populations that make comparisons between modelled outcomes and actual infestations difficult. Our results suggest that the model’s ability to predict both spatial structure and spread of the population will be improved by incorporating a spatially explicit element, with dispersal and recruitment probabilities that reflect the relative suitability of different parts of the landscape for these processes.
Resumo:
New efforts at biological control of Miconia calvescens (Melastomataceae) is a serious invader in the tropical Pacific, including the Hawaiian and Tahitian Islands, and currently poses a major threat to native biodiversity in the Wet Tropics of Australia. The species is fleshy-fruited, small-seeded and shade tolerant, and thus has the potential to be dispersed widely and recruit in relatively intact rainforest habitats, displacing native species. Understanding and predicting the rate of spread is critical for the design and implementation of effective management actions. We used an individual-based model incorporating a dispersal function derived from dispersal curves for similar berry-fruited native species, and life-history parameters of fecundity and mortality to predict the spatial structure of a Miconia population after a 30 year time period. We compared the modelled population spatial structure to that of an actual infestation in the rainforests of north Queensland. Our goal was to assess how well the model predicts actual dispersion and to identify potential barriers and conduits to seed movement and seedling establishment. The model overpredicts overall population size and the spatial extent of the actual infestation, predicting individuals to occur at a maximum 1,750 m from the source compared with the maximum distance of any detected individual in the actual infestation of 1,191 m. We identify several characteristic features of managed invasive populations that make comparisons between modelled outcomes and actual infestations difficult. Our results suggest that the model’s ability to predict both spatial structure and spread of the population will be improved by incorporating a spatially explicit element, with dispersal and recruitment probabilities that reflect the relative suitability of different parts of the landscape for these processes. Mikania micrantha H.B.K. (Asteraceae) in Papua New Guinea and Fiji.
Resumo:
Fiji leaf gall, caused the Fiji disease virus (genus Fijivirus, family Reoviridae, FDV), is a serious disease of sugarcane, Saccharum officinarum L., in Australia and several other Asia-Pacific countries. In Australia FDV is transmitted only by the planthopper Perkinsiella saccharicida Kirkaldy (Hemiptera: Delphacidae), in a propagative manner. Successful transmission of FDV by single planthoppers confined to individual virus free plants is highly variable, even under controlled conditions. The research reported here addresses two possible sources of this variation: 1) gender, wing form, and life stage of the planthopper; and 2) genotype of the source plant. The acquisition of FDV by macropterous males, macropterous females, brachypterous females, and nymphs of P. saccharicida from infected plants was investigated using reverse transcription-polymerase chain reaction to diagnose FDV infection in the vector. The proportion of individuals infected with FDV was not statistically related to life stage, gender, or adult wing form of the vector. The acquisition of FDV by P. saccharicida from four cultivars of sugarcane was compared to assess the influence of plant genotype on acquisition. Those planthopper populations reared on diseased 'NCo310' plants had twice as many infected planthoppers as those reared on 'Q110', 'WD1', and 'WD2'. Therefore, variation in FDV acquisition in this system is not the result of variation in the gender, wing form and life stage of the P. saccharicida vectors. The cultivar used as the source plant to rear vector populations does affect the proportion of infected planthoppers in a population.