23 resultados para Invertebrates, Fossil.
Resumo:
A new genus of philopotine Acroceridae in Baltic amber is described from both sexes. Archaeterphis hennigi gen. et sp. nov. is easily diagnosed from all other acrocerid genera by the deeply emarginate hind margin of the eye, short mouthparts, reduced wing venation, modified hind femora, and the large postpronotal lobes being proximate but not touching. The new genus is closely related to the extant genus Africaterphis Schlinger from southern Africa, which accords with a common biogeographic pattern in insects.
Resumo:
Invasive macrophyte species are a threat to native biodiversity and often grow to nuisance levels, therefore, making control options necessary. Macrophyte control can have pronounced impacts on littoral fish by reducing habitat heterogeneity and the loss of profitable (high density of invertebrates) foraging areas. Yet, there is little known about the impacts of macrophyte removal on invertebrates themselves. We conducted a macrophyte removal experiment, that is the cutting of channels into dense macrophyte beds, to investigate the impact of mechanical macrophyte control on invertebrate and fish communities in a littoral zone dominated by the invasive macrophyte Lagarosiphon major. The effect of macrophyte removal had only a temporary effect on macrophyte areal cover (4 months). Nevertheless, the treatment increased light penetration significantly. However, we could not detect any difference in epiphyton biomass. Invertebrate biomass increased in macrophyte stands 4 months after treatment and there was a shift in the invertebrate community composition. Mechanical control had no effect on invertebrate biodiversity. The higher invertebrate biomass did not translate into a higher fish density in the treated areas. The results of this study indicated that partial mechanical removal is a suitable option to control unwanted macrophyte stands.
Resumo:
The Rhabdoviridae, whose members collectively infect invertebrates, animals, and plants, form a large family that has important consequences for human health, agriculture, and wildlife ecology. Plant rhabdoviruses can be separated into the genera Cytorhabdovirus and Nucleorhabdovirus, based on their sites of replication and morphogenesis. This review presents a general overviewof classical and contemporary findings about rhabdovirus ecology, pathology, vector relations, and taxonomy. The genome organization and structure of several recently sequenced nucleorhabdoviruses and cytorhabdoviruses is integrated with new cell biology findings to provide a model for the replication of the two genera. A prospectus outlines the exciting opportunities for future research that will contribute to a more detailed understanding of the biology, biochemistry, replication and host interactions of the plant rhabdoviruses.
Resumo:
The sciaenid Protonibea diacanthus is a large, long-lived predatory fish of inshore northern Australian waters, which forms annual aggregations that are fished extensively by traditional (subsistence) and recreational fishers. There are now widespread concerns that the resource is being overexploited. Indigenous fishers of the Cape York Northern Peninsula Area (NPA) relate that large adult fish (up to 1500 mm total length (TL)) made up the bulk of the catch from the sciaenid aggregations until about 1994. In contrast, sexually mature P. diacanthus comprised only a small component (12 fish out of 270=4.4%) examined in a 1999–2000 sampling programme that was biased towards the largest individuals available. At 790 mm TL, the minimum size at first maturity for female P. diacanthus in this study is much smaller than the 920 mm TL reported previously in Queensland waters. Developing ovaries were observed in specimens sampled from sciaenid aggregations which formed in NPA waters between May and September 2000. However, no fish with ripe or spent gonads were found in the study, so the current timing and location of the spawning season for P. diacanthus in the region remain unknown. Food items observed in the analysis of the diet of P. diacanthus from the NPA included a variety of teleosts and invertebrates. The range of animal taxa represented in the prey items support the description of an ‘opportunistic predator’ attributed to the species. In our sampling, the stomach contents of fish caught during the time of the aggregation events did not differ from those observed at other times of the year. A total of 114 P. diacanthus were tagged and released at aggregation sites during the study period, and 3 fish (2.6%) were subsequently recaptured. The low rate of tag returns from the wild stock tagging programme, both in this study (2.6%) and from recreational fisher tag/release programmes for the sciaenid elsewhere in Queensland (6.5%), were not explained by tag loss nor mortality, given the high retention rate of tags and the zero mortality seen in tank trials. In response to the biological findings from this study, indigenous community councils of the NPA imposed a 2-year fishing moratorium for P. diacanthus. Surveys at aggregation sites in 2002 and 2003 established that much larger fish (mean size 103.5 cm TL) were again present on the grounds, albeit in very low numbers. These recent preliminary results highlight the critical need for continued monitoring and management of the P. diacanthus fishery in the NPA, if prospects for resource recovery are to be realised. The NPA initiative has provided a rare opportunity to negotiate a co-management strategy, based on scientific data and traditional knowledge, for the recovery of a cultural and economically significant fished resource.
Resumo:
We provide the first evidence of a small-headed fly planidium (first instar larva; Diptera: Acroceridae) associated with a whirligig mite (Acari: Acariformes: Prostigmata: Anystina: Anystidae) in Baltic amber. This fossil is surprising as parasitic nematodes are the only metazoans known to successfully attack acariform mites, and Acroceridae are believed to be host-restricted parasitoids of spiders. The fossil corroborates a previously published, but widely dismissed, paper that first reported parasitism of parasitengone mites by acrocerid planidia. The possible natural history implications of this find are discussed.
Resumo:
Two laboratory experiments were carried out to quantify the mortality and physiological responses of juvenile blue swimmer crabs (Portunus pelagicus) after simulated gillnet entanglement, air exposure, disentanglement, and discarding. In both experiments, all but control blue swimmer crabs were entangled in 1-m(2) gillnet panels for 1 h, exposed to air for 2 min, subjected to various treatments of disentanglement ranging between the forceful removal of none, one, two, and four appendages, then "discarded" into individual experimental tanks and monitored for 10 d. In Experiment 1, mortalities were associated with the number of appendages removed and the occurrence of unsealed wounds. In Experiment 2, live blue swimmer crabs were sampled for blood at 2 min and 6, 24, and 72 h post-discarding to test for the effects of disentanglement and appendage removal on total haemocyte counts, clotting times, protein levels (by refractive index), and blood ion concentrations. Compared with blue swimmer crabs that had sealed or no wounds, those with unsealed wounds had lower total haemocyte counts, protein, and calcium concentrations and increased clotting ties and magnesium and sodium levels. Induced autotomy, as opposed to the arbitrary, forceful removal of a appendages has the potential to minimize the mortality and stress of discarded, juvenile blue swimmer crabs.
Resumo:
Indo-Pacific mangrove swamps and seagrass beds are commonly located in close proximity to each other, often creating complex ecosystems linked by biological and physical processes. Although they are thought to provide important nursery habitats for fish, only limited information exists about their usage by fish outside of estuaries. The present study investigated fish assemblages in non-estuarine intertidal habitats where mangroves and seagrass overlap (the mangrove-seagrass continuum). Three habitats (mangrove, mangrove edge, seagrass) were sampled at 4 sites of the Wakatobi Marine National Park, Indonesia, using underwater visual census. Ninety-one species of fish were observed at a mean density of 130.1 +/- 37.2 ind. 1000 m(-2). Predatory fish (fish that feed on invertebrates and/or fish) were the most dominant feeding groups in the mangroves, whilst omnivores dominated on the mangrove edge and in the seagrass. Although the habitats along the mangrove-seagrass continuum were observed to be important for many fish, only 22 of the 942 coral reef species known within the area utilised mangroves as nursery habitat and only 15 utilised seagrass. Despite finding evidence that nursery grounds in mangroves and seagrass may not directly support high coral reef fish diversity, many of the coral reef nursery species found in this study are likely to be key herbivores or apex predators as adult fish on local coral reefs, and thus highly important to local fisheries. Although mangroves are not permanently inundated by the tide, this study highlights their importance as fish habitats, which at high tide support a greater abundance of fish than seagrass beds. In the light of the high rate of destruction of these habitats, their role in supporting fish assemblages requires consideration in marine resource management programs.
Resumo:
At an international conference on the eradication of invasive species, held in 2001, Simberloff (2002) noted some past successes in eradication—from the global eradication of smallpox (Fenner et al. 1988) to the many successful eradications of populations (mostly mammals) from small islands (e.g. Veitch and Bell 1990; Burbidge and Morris 2002). However, he cautioned that we needed to be more ambitious and aim higher if we are to prevent and reverse the growing threat of the homogenization of global biodiversity. In this chapter we review how the management strategy of eradication—the permanent removal of entire discrete populations—has contributed to the stretch in goals advocated by Simberloff. We also discuss impediments to eradication success, and summarize how some of the lessons learnt during this process have contributed to the other strategies (prevention and sustained control) that are required to manage the wider threat posed by invasive alien species. We concentrate on terrestrial vertebrates and weeds (our areas of expertise), but touch on terrestrial invertebrates and marine and freshwater species in the discussion on emerging issues, to illustrate some of the different constraints these taxa and habitats impose on the feasibility of eradication.
Resumo:
In 1313 scats of the spotted-tailed quoll Dasyurus maculatus, collected over 5 years from the gorge country of north-eastern New South Wales, the most frequent and abundant items were derived from mammals and a restricted set of insect orders. These quolls also ate river-associated items: waterbirds, eels, crayfish, aquatic molluscs and even frogs. Macropods contributed most of the mammal items, with possums, gliders and rodents also being common. Some food, particularly from macropods and lagomorphs, had been scavenged (as shown by fly larvae). The most frequent invertebrates were three orders of generally large insects Coleoptera, Hemiptera and Orthoptera, which were most frequent in summer and almost absent in winter scats. Monthly mean numbers of rodent and small dasyurid items per scat were inversely related to these large insects in scats. The numbers of reptile items were inversely related to the numbers of mammal (especially arboreal and small terrestrial mammal) items per scat, thus types of items interacted in their occurrences in monthly scat samples. Frequencies of most vertebrate items showed no seasonal, but much year-to-year, variation. This quoll population ate four main types of items, each requiring different skills to obtain: they hunted arboreal marsupials (possibly up trees), terrestrial small mammals and reptiles (on the ground), and seasonally available large insects (on trees or the ground), and scavenged carcases, mostly of large mammals but also birds and fishes (wherever they could find them).
Resumo:
Extract from the executive summary: A collaborative scoping research project to identify plant oil species with potential value in the production of fibre composite resins and assess their suitability to Queensland’s regions has been conducted by QDPI&F, USQ and Loc Composites Pty Ltd. The use of plant-oil based resins in the production of fibre composites will contribute to the Queensland economy through establishing sustainable high technology building products from renewable sources while decreasing the reliance of resin production on fossil fuels. The main objective of this project was to indentify a suite of plant oil species that show agronomic adaptability to the Australian environment (e.g. climate, soils) and economic viability of extracting plant oils for resin production within a highly competitive supply and demand production market.
Resumo:
A small population of tall slender conifers was discovered in 1994 in a deep rainforest canyon of the Wollemi National Park, New SouthWales, Australia. The living trees closely resembled fossils that were more than 65 million years old, and this ‘living fossil’ was recognised as a third extant genus in the Araucariaceae (Araucaria, Agathis and now Wollemia). The species was named the Wollemi pine (W. nobilis). Extensive searches uncovered very few populations, with the total number of adult trees being less than 100. Ex situ collections were quickly established in Sydney as part of the Wollemi Pine Recovery Plan. The majority of the ex situ population was later transferred to our custom-built facility in Queensland for commercial multiplication. Domestication has relied very heavily on the species’ amenability to vegetative propagation because seed collection from the natural populations is dangerous, expensive, and undesirable for conservation reasons. Early propagation success was poor, with only about 25% of cuttings producing roots. However, small increases in propagation success have a very large impact on a domestication program because plant production can be modelled on an exponential curve where each rooted cutting develops into a mother plant that, in turn, provides more rooted cuttings. An extensive research program elevated rooting percentages to greater than 80% and also provided in vitro methods for plant multiplication. These successes have enabled international release of the Wollemi pine as a new and attractive species for ornamental horticulture.
Resumo:
Cucurbit crops host a range of serious sap-sucking insect pests, including silverleaf whitefly (SLW) and aphids, which potentially represent considerable risk to the Australian horticulture industry. These pests are extremely polyphagous with a wide host range. Chemical control is made difficult due to resistance and pollution, and other side-effects are associated with insecticide use. Consequently, there is much interest in maximising the role of biological control in the management of these sap-sucking insect pests. This study aimed to evaluate companion cropping alongside cucurbit crops in a tropical setting as a means to increase the populations of beneficial insects and spiders so as to control the major sap-sucking insect pests. The Population of beneficial and harmful insects, with a focus on SLW and aphids, and other invertebrates were sampled weekly oil four different crops which could be used for habitat manipulation: Goodbug Mix (GBM; a proprietary seed Mixture including self-sowing annual and perennial herbaceous flower species); lablab (Lablab purpureus L. Sweet); lucerne (Medicago sativa L.); and niger (Guizotia abyssinica (L.f.) Cass.). Lablab hosted the highest numbers of beneficial insects (larvae and adults of lacewing (Mallada signata (Schneider)), ladybird beetles (Coccinella transversalis Fabricius) and spiders) while GBM hosted the highest numbers of European bees (Apis mellifera Linnaeus) and spiders. Lucerne and niger showed little promise in hosting beneficial insects, but lucerne hosted significantly more spiders (double the numbers) than niger. Lucerne hosted significantly more of the harmful insect species of aphids (Aphis gossypii (Glover)) and Myzus persicae (Sulzer)) and heliothis (Heliothis armigera Hubner). Niger hosted significantly more vegetable weevils (Listroderes difficillis (Germar)) than the other three species. Therefore, lablab and GBM appear to be viable options to grow within cucurbits or as field boundary crops to attract and increase beneficial insects and spiders for the control of sap-sucking insect pests. Use of these bio-control strategies affords the opportunity to minimise pesticide usage and the risks associated with pollution.
Resumo:
The Great Barrier Reef is a unique World Heritage Area of national and international significance. As a multiple use Marine Park, activities such as fishing and tourism occur along with conservation goals. Managers need information on habitats and biodiversity distribution and risks to ensure these activities are conducted sustainably. However, while the coral reefs have been relatively well studied, less was known about the deeper seabed in the region. From 2003 to 2006, the GBR Seabed Biodiversity Project has mapped habitats and their associated biodiversity across the length and breadth of the Marine Park to provide information that will help managers with conservation planning and to assess whether fisheries are ecologically sustainable, as required by environmental protection legislation (e.g. EPBC Act 1999). Holistic information on the biodiversity of the seabed was acquired by visiting almost 1,500 sites, representing a full range of known environments, during 10 month-long voyages on two vessels and deploying several types of devices such as: towed video and digital cameras, baited remote underwater video stations (BRUVS), a digital echo-sounder, an epibenthic sled and a research trawl to collect samples for more detailed data about plants, invertebrates and fishes on the seabed. Data were collected and processed from >600 km of towed video and almost 100,000 photos, 1150 BRUVS videos, ~140 GB of digital echograms, and from sorting and identification of ~14,000 benthic samples, ~4,000 seabed fish samples, and ~1,200 sediment samples.
Resumo:
The primary aim of this study was to determine the relationship between telomere length and age in a range of marine invertebrates including abalone (Haliotis spp) oysters (Saccostrea glomerata), spiny lobsters (Sagmariasus verreauxi formerly Jasus verreauxi and Jasus edwardsii) and school prawns (Metapenaeus macleayi). Additionally, this relationship was studied in a vertebrate organism using the freshwater fish Silver perch (Bidyanus bidyanus). Telomere length differences between tissues were also examined in some species such as Saccostrea glomerata, Sagmariasus verreauxi and Bidyanus bidyanus. In some cases cultured specimens of known age were used and this is quoted in the spreadsheets. For other wild-caught specimens where age was not known, size was used as a proxy for age. This may be a broad size class, or be determined by shell size or carapace length depending on the organism. Each spreadsheet contains raw data of telomere length estimates from Terminal Restriction Fragment Assays (TRF) for various individuals of each species including appropriate details such as age or size and tissue. Telomere length estimates are given in base pairs (bp). In most cases replicate experiments were conducted on groups of samples three times but on a small number of occasions only two replicate experiments were conducted. Further description of the samples can be found in final report of FRDC 2007/033. The arithmetic average for each individual (sample ID) across the two or three replicate experiments is also given. Bidyanus bidyanus (SilverPerch) Two sheets are contained within. a) Comparison of telomere length between different tissues (heart, liver and muscle) within the three year old age class - two replicate experiments were conducted. b) Comparison of telomere length between fish of different but known ages (0.25, 1, 2, and 3 years old) in each of three tissues, heart, liver and muscle – three replicate experiments were conducted per tissue. Haliotis spp (Abalone species) Three species were tested. H. asinina Telomere length was compared in two age classes-11 month and 18 month old abalone using muscle tissue from the foot. Within gel-variation was also estimated using a single sample run three times on one gel (replicate experiment). H. laevigata x H. rubra hybrids Telomere length was compared in three known age classes – two, three and four years old using muscle tissue from the foot. H. rubra Telomere length was compared in a range of different sized abalone using muscle tissue from the foot. Shell size is also given for each abalone Saccostrea glomerata Three sheets are contained within the file. a) Samples came from Moreton Bay Queensland in 2007. Telomere length was compared in two tissues (gill and mantle) of oysters in three age groups (1, 3 and 4 years) b) Samples came from Moreton Bay Queensland in 2009. Telomere length was compared in three age classes using DNA from gill tissue only c) Samples came from Wallis Lake, New South Wales. Telomere length was estimated from whole body minus the shell from 1 year old oysters, gill tissue of 3 age classes (1.5 years, 3 and 4 years), mantle tissue of two age classes (3 and 4 years). Sagmariasus verreauxi (formerly Jasus verreauxi) Telomere length was estimated from abdomen tissue of puerulus, gill and muscle tissue of 3 year old, large and very large size classes of lobsters. Jasus edwardsii Telomere length was measured in two size classes of lobsters- adults of varying sizes using muscle tissue and puerulus using tissues from the abdomen minus the exoskeleton. Metapenaeus macleayi Telomere length was measured in three size classes of school prawns adults. Muscle tissue was used, minus the exoskeleton.
Resumo:
Accurate and confident identification of the insects, spiders and mites in vegetable crops is the first step towards successful management of pests and natural enemies. It is an essential prerequisite for crop monitoring, which is the backbone of an effective pest management program. This workshop manual and trainer's handbook were compiled as part of an insect, spider and mite identification program for Australian vegetable growers. The workshop training is designed to help growers to: • know how to collect and preserve insects for identification • be able to classify most common insects (particularly those of horticultural significance) into broad groups • appreciate the importance of these groups in pest, predator and parasite identification and management • collect and classify some insect pests, predators and parasites of horticultural importance.