39 resultados para Informational Environment
Resumo:
Five species of commercial prawns Penaeus plebejus, P. merguiensis, P. semisulcatus/P. esculentus and M. bennettae, were obtained from South-East and North Queensland, chilled soon after capture and then stored either whole or deheaded on ice and ice slurry, until spoilage. Total bacterial counts, total volatile nitrogen, K-values and total demerit scores were assessed at regular intervals. Their shelf lives ranged from 10-17 days on ice and >20 days on ice slurry. Initial bacterial flora on prawns from shallower waters (4-15m) were dominated by Gram-positives and had lag periods around 7 days, whereas prawns from deeper waters (100m) were dominant in Pseudomonas spp. with no lag periods in bacterial growth. The dominant spoiler in ice was mainly Pseudomonas fragi whereas the main spoiler in ice slurry was Shewanella putrefaciens. Bacterial interactions seem to play a major role in the patterns of spoilage in relation to capture environment and pattern of storage
Resumo:
Cattle sourced for feedlots from extensive properties will generally have little experience of conditions to which they will be exposed in feedlots, eg close contact with humans, confinement, crowding and feed in troughs. Such conditions can result in stress (Fell 1994) which can have adverse effects on health and performance (Moberg 1985). This experiment determined the effect of prior exposure to aspects of a feedlot environment on the feedlot performance of Bos indicus steers. 21st Biennial Conference. 8 - 12 July 1996. University of Queensland. Brisbane.
Resumo:
Tillage is defined here in a broad sense, including disturbance of the soil and crop residues, wheel traffic and sowing opportunities. In sub-tropical, semi-arid cropping areas in Australia, tillage systems have evolved from intensively tilled bare fallow systems, with high soil losses, to reduced and no tillage systems. In recent years, the use of controlled traffic has also increased. These conservation tillage systems are successful in reducing water erosion of soil and sediment-bound chemicals. Control of runoff of dissolved nutrients and weakly sorbed chemicals is less certain. Adoption of new practices appears to have been related to practical and economic considerations, and proved to be more profitable after a considerable period of research and development. However there are still challenges. One challenge is to ensure that systems that reduce soil erosion, which may involve greater use of chemicals, do not degrade water quality in streams. Another challenge is to ensure that systems that improve water entry do not increase drainage below the crop root zone, which would increase the risk of salinity. Better understanding of how tillage practices influence soil hydrology, runoff and erosion processes should lead to better tillage systems and enable better management of risks to water quality and soil health. Finally, the need to determine the effectiveness of in-field management practices in achieving stream water quality targets in large, multi-land use catchments will challenge our current knowledge base and the tools available.
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.
Resumo:
Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the north-west of Mexico (CIANO) and sites across Australia during 3 seasons. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. Previously, we have evaluated both the performance of genotypes across environments and the genotype x environment interaction (G x E). The objective of this study was to interpret the G x E for yield in terms of crop attributes measured at individual sites and to identify the potential environmental drivers of this interaction. Groups of SBWs with consistent yield performance were identified, often comprising closely related lines. However, contrasting performance was also relatively common among sister lines or between a recurrent parent and its SBWs. Early flowering was a common feature among lines with broad adaptation and/or high yield in the northern Australian wheatbelt, while yields in the southern region did not show any association with the maturity type. Lines with high yields in the southern and northern regions had cooler canopies during flowering and early grain filling. Among the SBWs with Australian genetic backgrounds, lines best adapted to CIANO were tall (>100 cm), with a slightly higher ground cover. These lines also displayed a higher concentration of water-soluble carbohydrates in the stem at flowering, which was negatively correlated with stem number per unit area when evaluated in southern Australia (Horsham). Possible reasons for these patterns are discussed. Selection for yield at CIANO did not specifically identify the lines best adapted to northern Australia, although they were not the most poorly adapted either. In addition, groups of lines with specific adaptation to the south would not have been selected by choosing the highest yielding lines at CIANO. These findings suggest that selection at CIMMYT for Australian environments may be improved by either trait based selection or yield data combined with trait information. Flowering date, canopy temperature around flowering, tiller density, and water-soluble carbohydrate concentration in the stem at flowering seem likely candidates.
Resumo:
Milk obtained from cows on 2 subtropical dairy feeding systems were compared for their suitability for Cheddar cheese manufacture. Cheeses were made in a small-scale cheesemaking plant capable of making 2 blocks ( about 2 kg each) of Cheddar cheese concurrently. Its repeatability was tested over 10 separate cheesemaking days with no significant differences being found between the 2 vats in cheesemaking parameters or cheese characteristics. In the feeding trial, 16 pairs of Holstein - Friesian cows were used in 2 feeding systems (M1, rain-grown tropical grass pastures and oats; and M5, a feedlot, based on maize/barley silage and lucerne hay) over 2 seasons ( spring and autumn corresponding to early and late lactation, respectively). Total dry matter, crude protein (kg/cow. day) and metabolisable energy (MJ/cow.day) intakes were 17, 2.7, and 187 for M1 and 24, 4, 260 for M5, respectively. M5 cows produced higher milk yields and milk with higher protein and casein levels than the M1 cows, but the total solids and fat levels were similar (P > 0.05) for both M1 and M5 cows. The yield and yield efficiency of cheese produced from the 2 feeding systems were also not significantly different. The results suggest that intensive tropical pasture systems can produce milk suitable for Cheddar cheese manufacture when cows are supplemented with a high energy concentrate. Season and stage of lactation had a much greater effect than feeding system on milk and cheesemaking characteristics with autumn ( late lactation) milk having higher protein and fat contents and producing higher cheese yields.
Resumo:
This paper describes a new knowledge acquisition method using a generic design environment where context-sensitive knowledge is used to build specific DSS for rural business. Although standard knowledge acquisition methods have been applied in rural business applications, uptake remains low and familiar weaknesses such as obsolescence and brittleness apply. We describe a decision support system (DSS) building environment where contextual factors relevant to the end users are directly taken into consideration. This "end user enabled design environment" (EUEDE) engages both domain experts in creating an expert knowledge base and business operators/end users (such as farmers) in using this knowledge for building their specific DSS. We document the knowledge organisation for the problem domain, namely a dairy industry application. This development involved a case-study research approach used to explore dairy operational knowledge. In this system end users can tailor their decision-making requirements using their own judgement to build specific DSSs. In a specific end user's farming context, each specific DSS provides expert suggestions to assist farmers in improving their farming practice. The paper also shows the environment's generic capability.
Resumo:
Grain produced from doubled-haploid (DH) wheat lines, developed from a hard- and a soft-grained wheat cultivar, were bulked according to Pinb (puroindoline b) genotypes for an assessment of Chinese fresh noodle texture by a trained taste panel. Each DH line was designated as 'soft' or 'hard' grained, based on a PCR amplification of the wildtype, soft allele, or the mutant, hard allele. Theoretically, the soft and hard grain bulks represented respective Pinb alleles and an independent assortment of unlinked alleles from the parents, Sunco and Chuanyu 12. Grains from the parents and DH lines were grown at 2 locations in Queensland, Australia, and one in Sichuan, China. The grains were milled and processed for a taste panel evaluation in Chengdu, Sichuan. Results suggest the Pinb alleles had a significant effect on noodle softness and explained 30% of the variation; the 'soft' Pinb allele conferred a softer noodle texture. Location had a significant effect on noodle smoothness; wheat grain grown at Biloela, Queensland, produced a smoother noodle texture than grain grown in Sichuan. The effect of location confirms the importance of environment as a variable for this quality character. This investigation exemplifies the utility of Pinb markers for specifically altering Chinese Fresh Noodle texture.
Resumo:
Modeling of cultivar x trial effects for multienvironment trials (METs) within a mixed model framework is now common practice in many plant breeding programs. The factor analytic (FA) model is a parsimonious form used to approximate the fully unstructured form of the genetic variance-covariance matrix in the model for MET data. In this study, we demonstrate that the FA model is generally the model of best fit across a range of data sets taken from early generation trials in a breeding program. In addition, we demonstrate the superiority of the FA model in achieving the most common aim of METs, namely the selection of superior genotypes. Selection is achieved using best linear unbiased predictions (BLUPs) of cultivar effects at each environment, considered either individually or as a weighted average across environments. In practice, empirical BLUPs (E-BLUPs) of cultivar effects must be used instead of BLUPs since variance parameters in the model must be estimated rather than assumed known. While the optimal properties of minimum mean squared error of prediction (MSEP) and maximum correlation between true and predicted effects possessed by BLUPs do not hold for E-BLUPs, a simulation study shows that E-BLUPs perform well in terms of MSEP.
Resumo:
Strawberry breeding aims to provide cultivars that maximise consumer satisfaction and producer profitability in a changing environment. In this paper some concepts of profitability, consumer satisfaction and sustainability are explored for a subtropical climate using Queensland Australia, and Florida USA, as examples. The typical production environment is annual autumn planting of bare rooted runners into polythene covered raised beds at about 40000 plants/ha. Harvesting is late autumn to early spring, with fruit arriving at the major markets up to 2000km away from the production area within 1-4 days of harvest. The basic premise in the breed-big work is that consumers must enjoy the experience of eating strawberries, and that perceived flavour, sweetness, and juiciness are the major contributors to this experience. Using market chain information, we developed a basic value model comprised of costs, returns, and sustainability of market. To this basic outline are applied operational descriptors, such as 'speed of harvest', and associated plant characteristics, such as 'fruit display'. The expression of each plant characteristic is ascribed a value or level and together numerically describe the phenotype. This description is mathematically manipulated to provide a 'value index' for the cultivar. Nine cultivars including 'Strawberry Festival', 'Kabarla', 'DPI Rubygem' and 'Sweet Charlie' are described, and environmental issues that may impact on the subtropical strawberry breeding objectives are discussed. Product differentiation and the use of exotic germplasm as a new source of genes for flavour and resistance to disease and environmental stress will likely be the cornerstones of future progress in subtropical strawberry breeding. This approach should satisfy both consumers and producers.
Resumo:
In the wheatbelt of eastern Australia, rainfall shifts from winter dominated in the south (South Australia, Victoria) to summer dominated in the north (northern New South Wales, southern Queensland). The seasonality of rainfall, together with frost risk, drives the choice of cultivar and sowing date, resulting in a flowering time between October in the south and August in the north. In eastern Australia, crops are therefore exposed to contrasting climatic conditions during the critical period around flowering, which may affect yield potential, and the efficiency in the use of water (WUE) and radiation (RUE). In this work we analysed empirical and simulated data, to identify key climatic drivers of potential water- and radiation-use efficiency, derive a simple climatic index of environmental potentiality, and provide an example of how a simple climatic index could be used to quantify the spatial and temporal variability in resource-use efficiency and potential yield in eastern Australia. Around anthesis, from Horsham to Emerald, median vapour pressure deficit (VPD) increased from 0.92 to 1.28 kPa, average temperature increased from 12.9 to 15.2°C, and the fraction of diffuse radiation (FDR) decreased from 0.61 to 0.41. These spatial gradients in climatic drivers accounted for significant gradients in modelled efficiencies: median transpiration WUE (WUEB/T) increased southwards at a rate of 2.6% per degree latitude and median RUE increased southwards at a rate of 1.1% per degree latitude. Modelled and empirical data confirmed previously established relationships between WUEB/T and VPD, and between RUE and photosynthetically active radiation (PAR) and FDR. Our analysis also revealed a non-causal inverse relationship between VPD and radiation-use efficiency, and a previously unnoticed causal positive relationship between FDR and water-use efficiency. Grain yield (range 1-7 t/ha) measured in field experiments across South Australia, New South Wales, and Queensland (n = 55) was unrelated to the photothermal quotient (Pq = PAR/T) around anthesis, but was significantly associated (r2 = 0.41, P < 0.0001) with newly developed climatic index: a normalised photothermal quotient (NPq = Pq . FDR/VPD). This highlights the importance of diffuse radiation and vapour pressure deficit as sources of variation in yield in eastern Australia. Specific experiments designed to uncouple VPD and FDR and more mechanistic crop models might be required to further disentangle the relationships between efficiencies and climate drivers.
Resumo:
The freshwater sawfish (Pristis microdon) is a critically endangered elasmobranch. Ontogenetic changes in the habitat use of juvenile P. microdon were studied using acoustic tracking in the Fitzroy River, Western Australia. Habitat partitioning was significant between 0+ (2007 year class) and larger 1+ (2006 year class) P. microdon. Smaller 0+ fish generally occupied shallower water (<0.6 m) compared with 1+ individuals, which mainly occurred in depths >0.6 m. Significant differences in hourly depth use were also revealed. The depth that 1+ P. microdon occupied was significantly influenced by lunar phase with these animals utilising a shallower and narrower depth range during the full moon compared with the new moon. This was not observed in 0+ individuals. Habitat partitioning was likely to be related to predator avoidance, foraging behaviours, and temperature and/or light regimes. The occurrence of 1+ P. microdon in deeper water may also result from a need for greater depths in which to manoeuvre. The present study demonstrates the utility of acoustic telemetry in monitoring P. microdon in a riverine environment. These results demonstrate the need to consider the habitat requirements of different P. microdon cohorts in the strategic planning of natural resources and will aid in the development of management strategies for this species.
Resumo:
Numerous tests have been used to measure beef cattle temperament, but limited research has addressed the relationship between such tests and whether temperament can be modified. One-hundred-and-forty-four steers were given one of three human handling and yarding experiences on six occasions during a 12-month grazing period post-weaning (backgrounding): Good handling/yarding, Poor handling/yarding and Minimal handling/yarding. At the end of this phase the cattle were lot-fed for 78 days, with no handling/yarding treatments imposed, before being transported for commercial slaughter. Temperament was assessed at the start of the experiment, during backgrounding and lot-feeding by flight speed (FS) and a fear of humans test, which measured the proximity to a stimulus person (zone average; ZA), the closest approach to the person (CA) and the amount the cattle moved around the test arena (total transitions; TT). During backgrounding, FS decreased for all treatments and at the end of backgrounding there was no difference between them. The rate of decline, however, was greatest in the Good group, smallest in the Minimal group with the Poor intermediate. In contrast, ZA was affected by treatment, with a greater reduction for the Good group than the others (P = 0.012). During lot-feeding, treatment did not affect FS, but all groups showed a decrease in ZA, with the greatest change in the Poor group, the least in the Good and the Minimal intermediate (P = 0.052). CA was positively correlated with ZA (r = 0.18 to 0.66) and negatively with TT (r = -0.180 to -0.659). FS was consistently correlated with TT only (r = 0.17 to 0.49). These findings suggest that FS and TT measure a similar characteristic, as do ZA and CA, but that these characteristics are different from one another, indicating that temperament is not a unitary trait, but has different facets. FS and TT measure one facet that we suggest is general agitation, whilst ZA and CA measure fear of people. Thus, the cattle became less agitated during backgrounding, but the effect was not permanently influenced by the quantity and quality of handling/yarding. However, Good handling/yarding reduced fearfulness of people. Fear of people was also reduced during lot-feeding, probably as a consequence of frequent exposure to humans in a situation that was neutral or positive for the cattle.
Resumo:
Rainfall variability is a major challenge to sustainable management in semi-arid rangelands. We present empirical evidence from a large, long-term grazing trial in northern Australia on the relative performance of constant heavy stocking, moderate stocking at long-term carrying capacity and variable stocking in coping with climate variability over a range of rainfall years. Moderate stocking gave good economic returns, maintained pasture condition and minimised soil loss and runoff. Heavy stocking was neither sustainable nor profitable in the long term. Variable stocking generally performed well but suffered economic loss and some decline in pasture condition in the transition from good to poor years. Importantly, our results show that sustainable and profitable management are compatible in semi-arid rangelands.
Resumo:
The Cape York Peninsula Land Use Strategy (CYPLUS) is a joint Queensland/Commonwealth initiative to provide a framework for making decisions about how to use and manage the natural resources of Cape York Peninsula in ways that will be ecologically sustainable. As part of the Natural Resources Analysis Program (NRAP) of CYPLUS, the Fisheries Division of the Queensland Department of Primary Industries has mapped the marine vegetation (mangroves and seagrasses) for Cape York Peninsula. The project ran from July 1992 to June 1994. Field work was undertaken in November 1992, May 1993, and April 1994. Final report on project: NRO6 – Marine Plan (Seagrass/Mangrove) Distribution. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]