62 resultados para Food conservation.
Resumo:
Seagrass meadows are declining globally at an unprecedented rate, yet these valuable ecosystem service providers remain marginalized within many conservation agendas. In the Indo-Pacific, this is principally because marine conservation priorities do not recognize the economic and ecological value of the goods and services that seagrasses provide. Dependency on coastal marine resources in the Indo-Pacific for daily protein needs is high relative to other regions and has been found in some places to be up to 100%. Habitat loss therefore may have negative consequences for food security in the region. Whether seagrass resources comprise an important contribution to this dependency remains largely untested. Here, we assemble information sources from throughout the Indo-Pacific region that discuss shallow water fisheries, and examine the role of seagrass meadows in supporting production, both directly, and indirectly through process of habitat connectivity (e.g., nursery function and foraging areas). We find information to support the premise that seagrass meadows are important for fisheries production. They are important fishery areas, and they support the productivity and biodiversity of coral reefs. We argue the value of a different paradigm to the current consensus on marine conservation priorities within the Indo-Pacific that places seagrass conservation as a priority.
Resumo:
High levels of hydrological connectivity during seasonal flooding provide significant opportunities for movements of fish between rivers and their floodplains, estuaries and the sea, possibly mediating food web subsidies among habitats. To determine the degree of utilisation of food sources from different habitats in a tropical river with a short floodplain inundation duration (similar to 2 months), stable isotope ratios in fishes and their available food were measured from three habitats (inundated floodplain, dry season freshwater, coastal marine) in the lower reaches of the Mitchell River, Queensland (Australia). Floodplain food sources constituted the majority of the diet of large-bodied fishes (barramundi Lates calcarifer, catfish Neoarius graeffei) captured on the floodplain in the wet season and for gonadal tissues of a common herbivorous fish (gizzard shad Nematalosa come), the latter suggesting that critical reproductive phases are fuelled by floodplain production. Floodplain food sources also subsidised barramundi from the recreational fishery in adjacent coastal and estuarine areas, and the broader fish community from a freshwater lagoon. These findings highlight the importance of the floodplain in supporting the production of large fishes in spite of the episodic nature and relatively short duration of inundation compared to large river floodplains of humid tropical regions. They also illustrate the high degree of food web connectivity mediated by mobile fish in this system in the absence of human modification, and point to the potential consequences of water resource development that may reduce or eliminate hydrological connectivity between the river and its floodplain.
Resumo:
Consumer risk assessment is a crucial step in the regulatory approval of pesticide use on food crops. Recently, an additional hurdle has been added to the formal consumer risk assessment process with the introduction of short-term intake or exposure assessment and a comparable short-term toxicity reference, the acute reference dose. Exposure to residues during one meal or over one day is important for short-term or acute intake. Exposure in the short term can be substantially higher than average because the consumption of a food on a single occasion can be very large compared with typical long-term or mean consumption and the food may have a much larger residue than average. Furthermore, the residue level in a single unit of a fruit or vegetable may be higher by a factor (defined as the variability factor, which we have shown to be typically ×3 for the 97.5th percentile unit) than the average residue in the lot. Available marketplace data and supervised residue trial data are examined in an investigation of the variability of residues in units of fruit and vegetables. A method is described for estimating the 97.5th percentile value from sets of unit residue data. Variability appears to be generally independent of the pesticide, the crop, crop unit size and the residue level. The deposition of pesticide on the individual unit during application is probably the most significant factor. The diets used in the calculations ideally come from individual and household surveys with enough consumers of each specific food to determine large portion sizes. The diets should distinguish the different forms of a food consumed, eg canned, frozen or fresh, because the residue levels associated with the different forms may be quite different. Dietary intakes may be calculated by a deterministic method or a probabilistic method. In the deterministic method the intake is estimated with the assumptions of large portion consumption of a ‘high residue’ food (high residue in the sense that the pesticide was used at the highest recommended label rate, the crop was harvested at the smallest interval after treatment and the residue in the edible portion was the highest found in any of the supervised trials in line with these use conditions). The deterministic calculation also includes a variability factor for those foods consumed as units (eg apples, carrots) to allow for the elevated residue in some single units which may not be seen in composited samples. In the probabilistic method the distribution of dietary consumption and the distribution of possible residues are combined in repeated probabilistic calculations to yield a distribution of possible residue intakes. Additional information such as percentage commodity treated and combination of residues from multiple commodities may be incorporated into probabilistic calculations. The IUPAC Advisory Committee on Crop Protection Chemistry has made 11 recommendations relating to acute dietary exposure.
Resumo:
Urban encroachment on dense, coastal koala populations has ensured that their management has received increasing government and public attention. The recently developed National Koala Conservation Strategy calls for maintenance of viable populations in the wild. Yet the success of this, and other, conservation initiatives is hampered by lack of reliable and generally accepted national and regional population estimates. In this paper we address this problem in a potentially large, but poorly studied, regional population in the State that is likely to have the largest wild populations. We draw on findings from previous reports in this series and apply the faecal standing-crop method (FSCM) to derive a regional estimate of more than 59 000 individuals. Validation trials in riverine communities showed that estimates of animal density obtained from the FSCM and direct observation were in close agreement. Bootstrapping and Monte Carlo simulations were used to obtain variance estimates for our population estimates in different vegetation associations across the region. The most favoured habitat was riverine vegetation, which covered only 0.9% of the region but supported 45% of the koalas. We also estimated that between 1969 and 1995 -30% of the native vegetation associations that are considered as potential koala habitat were cleared, leading to a decline of perhaps 10% in koala numbers. Management of this large regional population has significant implications for the national conservation of the species: the continued viability of this population is critically dependent on the retention and management of riverine and residual vegetation communities, and future vegetation-management guidelines should be cognisant of the potential impacts of clearing even small areas of critical habitat. We also highlight eight management implications.
Resumo:
This study highlights the importance of considering how seasonality of rainfall affects availability of resources and consequently species distributions within tropical ecosystems. The endangered northern bettong, Bettongia tropica Wakefield is thought to be restricted to habitats where seasonal availability of hypogeous fungi, their principal food resource, remains high. To test this hypothesis fungal abundance was quantified in the early wet, late wet, early dry and late dry seasons within known bettong habitat. A relationship was found between precipitation and fungal availability, with the abundance of hypogeous fungi being significantly lower in the late dry season. Fungal availability correlated strongly with the seasonal rainfall pattern determined from 74-year monthly means. This contrasts with a previous study where mycophagy, measured by faecal analysis, remained high across seasons presumably because of aseasonal rainfall during that study period. Alloteropsis semialata R.Br. (cockatoo grass) use by bettongs increased significantly during the period of low fungal availability. This suggests that the importance of cockatoo grass as an alternative food resource during annual and extended dry periods has previously been underestimated. With the frequency and intensity of drought expected to increase with global climate change, these findings have significant implications for bettong management. The important and possibly equivalent dependence of B. tropica on both hypogeous fungi and A. semialata helps to explain their habitat preference and identifies this species as a true ecotonal specialist.
Resumo:
Wildlife populations are affected by a series of emerging diseases, some of which pose a significant threat to their conservation. They can also be reservoirs of pathogens that threaten domestic animal and human health. In this paper, we review the ecology of two viruses that have caused significant disease in domestic animals and humans and are carried by wild fruit bats in Asia and Australia. The first, Hendra virus, has caused disease in horses and/or humans in Australia every five years since it first emerged in 1994. Nipah virus has caused a major outbreak of disease in pigs and humans in Malaysia in the late 1990s and has also caused human mortalities in Bangladesh annually since 2001. Increased knowledge of fruit bat population dynamics and disease ecology will help improve our understanding of processes driving the emergence of diseases from bats. For this, a transdisciplinary approach is required to develop appropriate host management strategies that both maximise the conservation of bat populations as well as minimise the risk of disease outbreaks in domestic animals and humans.
Resumo:
Bats (order Chiroptera, suborders Megachiroptera and Microchiroptera) are abundant, diverse, and geographically widespread. These mammals provide us with resources, but their importance is minimized and many of their populations and species are at risk, even threatened or endangered. Some of their characteristics (food choices, colonial or solitary nature, population structure, ability to fly, seasonal migration and daily movement patterns, torpor and hibernation, life span, roosting behaviors, ability to echolocate, virus susceptibility) make them exquisitely suitable hosts of viruses and other disease agents. Bats of certain species are well recognized as being capable of transmitting rabies virus, but recent observations of outbreaks and epidemics of newly recognized human and livestock diseases caused by viruses transmitted by various megachiropteran and microchiropteran bats have drawn attention anew to these remarkable mammals. This paper summarizes information regarding chiropteran characteristics and information regarding 66 viruses that have been isolated from bats. From these summaries, it is clear that we do not know enough about bat biology, that we are doing too little in terms of bat conservation, and that there remain a multitude of questions regarding the role of bats in disease emergence.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
The sciaenid Protonibea diacanthus is a large, long-lived predatory fish of inshore northern Australian waters, which forms annual aggregations that are fished extensively by traditional (subsistence) and recreational fishers. There are now widespread concerns that the resource is being overexploited. Indigenous fishers of the Cape York Northern Peninsula Area (NPA) relate that large adult fish (up to 1500 mm total length (TL)) made up the bulk of the catch from the sciaenid aggregations until about 1994. In contrast, sexually mature P. diacanthus comprised only a small component (12 fish out of 270=4.4%) examined in a 1999–2000 sampling programme that was biased towards the largest individuals available. At 790 mm TL, the minimum size at first maturity for female P. diacanthus in this study is much smaller than the 920 mm TL reported previously in Queensland waters. Developing ovaries were observed in specimens sampled from sciaenid aggregations which formed in NPA waters between May and September 2000. However, no fish with ripe or spent gonads were found in the study, so the current timing and location of the spawning season for P. diacanthus in the region remain unknown. Food items observed in the analysis of the diet of P. diacanthus from the NPA included a variety of teleosts and invertebrates. The range of animal taxa represented in the prey items support the description of an ‘opportunistic predator’ attributed to the species. In our sampling, the stomach contents of fish caught during the time of the aggregation events did not differ from those observed at other times of the year. A total of 114 P. diacanthus were tagged and released at aggregation sites during the study period, and 3 fish (2.6%) were subsequently recaptured. The low rate of tag returns from the wild stock tagging programme, both in this study (2.6%) and from recreational fisher tag/release programmes for the sciaenid elsewhere in Queensland (6.5%), were not explained by tag loss nor mortality, given the high retention rate of tags and the zero mortality seen in tank trials. In response to the biological findings from this study, indigenous community councils of the NPA imposed a 2-year fishing moratorium for P. diacanthus. Surveys at aggregation sites in 2002 and 2003 established that much larger fish (mean size 103.5 cm TL) were again present on the grounds, albeit in very low numbers. These recent preliminary results highlight the critical need for continued monitoring and management of the P. diacanthus fishery in the NPA, if prospects for resource recovery are to be realised. The NPA initiative has provided a rare opportunity to negotiate a co-management strategy, based on scientific data and traditional knowledge, for the recovery of a cultural and economically significant fished resource.
Resumo:
The mountain yellow-legged frog Rana muscosa sensu lato, once abundant in the Sierra Nevada of California and Nevada, and the disjunct Transverse Ranges of southern California, has declined precipitously throughout its range, even though most of its habitat is protected. The species is now extinct in Nevada and reduced to tiny remnants in southern California, where as a distinct population segment, it is classified as Endangered. Introduced predators (trout), air pollution and an infectious disease (chytridiomycosis) threaten remaining populations. A Bayesian analysis of 1901 base pairs of mitochondrial DNA confirms the presence of two deeply divergent clades that come into near contact in the Sierra Nevada. Morphological studies of museum specimens and analysis of acoustic data show that the two major mtDNA clades are readily differentiated phenotypically. Accordingly, we recognize two species, Rana sierrae, in the northern and central Sierra Nevada, and R. muscosa, in the southern Sierra Nevada and southern California. Existing data indicate no range overlap. These results have important implications for the conservation of these two species as they illuminate a profound mismatch between the current delineation of the distinct population segments (southern California vs. Sierra Nevada) and actual species boundaries. For example, our study finds that remnant populations of R. muscosa exist in both the southern Sierra Nevada and the mountains of southern California, which may broaden options for management. In addition, despite the fact that only the southern California populations are listed as Endangered, surveys conducted since 1995 at 225 historic (1899-1994) localities from museum collections show that 93.3% (n=146) of R. sierrae populations and 95.2% (n=79) of R. muscosa populations are extinct. Evidence presented here underscores the need for revision of protected population status to include both species throughout their ranges.
Resumo:
Many arthropod predators and parasitoids exhibit either stage-specific or lifetime omnivory, in that they include extra-floral nectar, floral nectar, honeydew or pollen in their immature and/or adult diet. Access to these plant-derived foods can enhance pest suppression by increasing both the individual fitness and local density of natural enemies. Commercial products such as Amino-Feed®, Envirofeast®, and Pred-Feed® can be applied to crops to act as artificial-plant-derived foods. In laboratory and glasshouse experiments we examined the influence of carbohydrate and protein rich Amino-Feed UV® or Amino-Feed, respectively, on the fitness of a predatory nabid bug Nabis kinbergii Reuter (Hemiptera: Nabidae) and bollworm pupal parasitoid Ichneumon promissorius (Erichson) (Hymenoptera: Ichneumonidae). Under the chosen conditions, the provision of either wet or dry residues of Amino-Feed UV had no discernable effect on immediate or longer-term survival and immature development times of N. kinbergii. In contrast, the provision of honey, Amino-Feed plus extrafloral nectar, and extrafloral nectar alone had a marked effect on the longevity of I. promissorius, indicating that they were limited by at least carbohydrates as an energy source, but probably not protein. Compared with a water only diet, the provision of Amino-Feed plus extrafloral nectar increased the longevity of males and females of I. promissorius by 3.0- and 2.4-fold, respectively. Not only did female parasitoids live longer when provided food, but the total number of eggs laid and timing of deposition was affected by diet under the chosen conditions. Notably, females in the water and honey treatments deposited greater numbers of eggs earlier in the trial, but this trend was unable to be sustained over their lifetime. Egg numbers in these treatments subsequently fell below the levels achieved by females in the Amino-Feed plus extrafloral nectar and cotton extrafloral nectar only treatments. Furthermore, there were times when the inclusion of the Amino-Feed was beneficial compared with cotton extrafloral nectar only. Artificial food supplements and plant-derived foods are worthy of further investigation because they have potential to improve the ecosystem service of biological pest control in targeted agroecosystems by providing natural enemies with an alternative source of nutrition, particularly during periods of prey/host scarcity.
Resumo:
To assess the International Union for Conservation of Nature (IUCN) status of Macrozamia platyrhachis F.M.Bailey, we surveyed this central Queensland cycad for its population abundance and health and its pollinator type and pollination syndrome (thermogenesis and volatile emissions). Plants are locally abundant within the 11 discrete populations surveyed, with an estimated population of 611 315 adult plants. Plants are highly restricted to a small area of occupancy, seed dispersal is nearly non-existent and extreme fires appear to have destroyed almost all seeds and seedlings and decimated the pollinators. Of known Macrozamia pollinators, only the thrips, Cycadothrips chadwicki Mound, were found on cones, and these were found in very low numbers. The pollination syndrome for this cycad appears to be unique, based on two cone traits. For one, thermogenesis peaks in early evening, a contrast with daytime peaks of other Cycadothrips-pollinated Macrozamia, but matches that of the Tranes weevil-pollinated Macrozamia machinii. In addition, cone volatiles include both previously unreported compounds as well as those reported exclusively on either Cycadothrips- or Tranes-pollinated species. Based on its small, fragmented area of occupancy, projected population declines and the unique pollination syndrome, we recommend that M. platyrhachis retain its current status as 'Endangered'. Habitat management plans should stipulate that controlled burns be avoided during cycad coning season and that wildfires be controlled to minimise damage to seedlings and pollinators.
Resumo:
One of the pathways for transfer of cadmium (Cd) through the food chain is addition of urban wastewater solids (biosolids) to soil, and many countries have restrictions on biosolid use to minimize crop Cd contamination. The basis of these restrictions often lies in laboratory or glasshouse experimentation of soil-plant transfer of Cd, but these studies are confounded by artefacts from growing crops in controlled laboratory conditions. This study examined soil to plant (wheat grain) transfer of Cd under a wide range of field environments under typical agronomic conditions, and compared the solubility and bioavailability of Cd in biosolids to soluble Cd salts. Solubility of biosolid Cd (measured by examining Cd partitioning between soil and soil solution) was found to be equal to or greater than that of soluble Cd salts, possibly due to competing ions added with the biosolids. Conversely, bioavailability of Cd to wheat and transfer to grain was less than that of soluble Cd salts, possibly due to addition of Zn with the biosolids, causing reduced plant uptake or grain loading, or due to complexation of soluble Cd2+ by dissolved organic matter.
Resumo:
The introgression of domestic dog genes into dingo populations threatens the genetic integrity of 'pure' dingoes. However, dingo conservation efforts are hampered by difficulties in distinguishing between dingoes and hybrids in the field. This study evaluates consistency in the status of hybridisation (i.e. dingo, hybrid or dog) assigned by genetic analyses, skull morphology and visual assessments. Of the 56 south-east Queensland animals sampled, 39 (69.6%) were assigned the same status by all three methods, 10 (17.9%) by genetic and skull methods, four (7.1%) by genetic and visual methods; and two (3.6%) by skull and visual methods. Pair-wise comparisons identified a significant relationship between genetic and skull methods, but not between either of these and visual methods. Results from surveying 13 experienced wild dog managers showed that hybrids were more easily identified by visual characters than were dingoes. A more reliable visual assessment can be developed through determining the relationship between (1) genetics and phenotype by sampling wild dog populations and (2) the expression of visual characteristics from different proportions and breeds of domestic dog genes by breeding trials. Culling obvious hybrids based on visual characteristics, such as sable and patchy coat colours, should slow the process of hybridisation.