17 resultados para Discovery Tools
Resumo:
The cDNAs coding for the brain GnRHs (AY373449-51), pituitary GH, SL and PRL, and liver IGFs (AY427954-5) were isolated. Partial cDNA sequences of the brain (Cyp19b) and gonadal (Cyp19a) aromatases have also been obtained. These tools would be utilized to study the endocrine regulation of puberty in the grey mullet.
Resumo:
To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded: chitinase, 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species.
Resumo:
To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded:chitinase, 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species.
Resumo:
Large-scale gene discovery has been performed for the grass fungal endophytes Neotyphodium coenophialum, Neotyphodium lolii, and Epichloë festucae. The resulting sequences have been annotated by comparison with public DNA and protein sequence databases and using intermediate gene ontology annotation tools. Endophyte sequences have also been analysed for the presence of simple sequence repeat and single nucleotide polymorphism molecular genetic markers. Sequences and annotation are maintained within a MySQL database that may be queried using a custom web interface. Two cDNA-based microarrays have been generated from this genome resource. They permit the interrogation of 3806 Neotyphodium genes (NchipTM microarray), and 4195 Neotyphodium and 920 Epichloë genes (EndoChipTM microarray), respectively. These microarrays provide tools for high-throughput transcriptome analysis, including genome-specific gene expression studies, profiling of novel endophyte genes, and investigation of the host grass–symbiont interaction. Comparative transcriptome analysis in Neotyphodium and Epichloë was performed
Resumo:
Background: Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources: The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.
Resumo:
Two examples of GIS-based multiple-criteria evaluations of plantation forests are presented. These desktop assessments use available topographical, geological and pedological information to establish the risk of occurrence of certain environmentally detrimental processes. The first case study is concerned with the risk that chemical additives (i.e. simazine) applied within the forestry landscape may reach the drainage system. The second case study assesses the vulnerability of forested areas to landslides. The subject of the first multiple-criteria evaluation (MCE) was a 4 km2 logging area, which had been recently site-prepared for a Pinus plantation. The criteria considered relevant to the assessment were proximity to creeks, slope, soil depth to the restrictive layer (i.e. potential depth to a perched water table) and soil erodability (based on clay content). The output of the MCE was in accordance with field observations, showing that this approach has the potential to provide management support by highlighting areas vulnerable to waterlogging, which in turn can trigger overland flow and export of pollutants to the local stream network. The subject of the second evaluation was an Araucaria plantation which is prone to landslips during heavy rain. The parameters included in the assessment were drainage system, the slope of the terrain and geological features such as rocks and structures. A good correlation between the MCE results and field observations was found, suggesting that this GIS approach is useful for the assessment of natural hazards. Multiple-criteria evaluations are highly flexible as they can be designed in either vector or raster format, depending on the type of available data. Although tested on specific areas, the MCEs presented here can be easily used elsewhere and assist both management intervention and the protection of the adjacent environment by assessing the vulnerability of the forest landscape to either introduced chemicals or natural hazards.
Resumo:
Phosphine is the primary fumigant used to protect the majority of the world' s grain and a variety of other stored commodities from insect pests. Phosphine is playing an increasingly important role in the protection of commodities for two primary reasons. Firstly, use of the alternative fumigant, methyl bromide, has been sharply curtailed and is tightly regulated due to its role in ozone depletion, and secondly, consumers are becoming increasingly intolerant of contact pesticides. Niche alternatives to phosphine exist, but they suffer from a range of factors that limit their use, including: 1) Limited commercial adoption due to expense or slow mode of action; 2) Poor efficacy due to low toxicity, rapid sorption, limited volatility or high density; 3) Public health concerns due to toxicity to handlers or nearby residents, as well as risk of explosion; 4) Poor consumer acceptance due to toxic residues or smell. These same factors limit the prospects of quickly identifying and deploying a new fumigant. Given that resistance toward phosphine is increasing among insect pests, improved monitoring and management of resistance is a priority. Knowledge of the mode of action of phosphine as well as the mechanisms of resistance may also greatly reduce the effort and expense of identifying synergists or novel replacement compounds.
Resumo:
A new genus (Kaurimyia thorpei gen. et sp. nov.) of the enigmatic fly family Apsilocephalidae (Asiloidea) is described from New Zealand. Kaurimyia thorpei gen. et sp. nov. is described and figured from male and female specimens, one of which was collected in Kauri forest near Auckland (North Island). While superficially similar to Apsilocephala Krober, this new genus shows closer affinities to Clesthentia White (=Clesthentiella Nagatomi, Saigusa, Nagatomi et Lyneborg syn. nov.) from Tasmania based on genitalic characters such as aedeagus shape and non-articulated surstyli. Apsilocephalidae is presently known from just a few extant species in North America and Tasmania (Australia), although extinct species are recorded from the Holarctic and Oriental regions. This is the first description of the family from New Zealand.
Resumo:
Because of the variable and changing environment, advisors and farmers are seeking systems that provide risk management support at a number of time scales. The Agricultural Production Systems Research Unit, Toowoomba, Australia has developed a suite of tools to assist advisors and farmers to better manage risk in cropping. These tools range from simple rainfall analysis tools (Rainman, HowWet, HowOften) through crop simulation tools (WhopperCropper and YieldProphet) to the most complex, APSFarm, a whole-farm analysis tool. Most are derivatives of the APSIM crop model. These tools encompass a range of complexity and potential benefit to both the farming community and for government policy. This paper describes, the development and usage of two specific products; WhopperCropper and APSFarm. WhopperCropper facilitates simulation-aided discussion of growers' exposure to risk when comparing alternative crop input options. The user can readily generate 'what-if' scenarios that separate the major influences whilst holding other factors constant. Interactions of the major inputs can also be tested. A manager can examine the effects of input levels (and Southern Oscillation Index phase) to broadly determine input levels that match their attitude to risk. APSFarm has been used to demonstrate that management changes can have different effects in short and long time periods. It can be used to test local advisors and farmers' knowledge and experience of their desired rotation system. This study has shown that crop type has a larger influence than more conservative minimum soil water triggers in the long term. However, in short term dry periods, minimum soil water triggers and maximum area of the various crops can give significant financial gains.
Resumo:
Spotted gum dominant forests occur from Cooktown in northern Queensland (Qld) to Orbost in Victoria (Boland et al. 2006) and these forests are commercially very important with spotted gum the most commonly harvested hardwood timber in Qld and one of the most important in New South Wales (NSW). Spotted gum has a wide range of end uses from solid wood products through to power transmission poles and generally has excellent sawing and timber qualities (Hopewell 2004). The private native forest resource in southern Qld and northern NSW is a critical component of the hardwood timber industry (Anon 2005, Timber Qld 2006) and currently half or more of the native forest timber resource harvested in northern NSW and Qld is sourced from private land. However, in many cases productivity on private lands is well below what could be achieved with appropriate silvicultural management. This project provides silvicultural management tools to assist extension staff, land owners and managers in the south east Qld and north eastern NSW regions. The intent was that this would lead to improvement of the productivity of the private estate through implementation of appropriate management. The other intention of this project was to implement a number of silvicultural experiments and demonstration sites to provide data on growth rates of managed and unmanaged forests so that landholders can make informed decisions on the future management of their forests. To assist forest managers and improve the ability to predict forest productivity in the private resource, the project has developed: • A set of spotted gum specific silvicultural guidelines for timber production on private land that cover both silvicultural treatment and harvesting. The guidelines were developed for extension officers and property owners. • A simple decision support tool, referred to as the spotted gum productivity assessment tool (SPAT), that allows an estimation of: 1. Tree growth productivity on specific sites. Estimation is based on the analysis of site and growth data collected from a large number of yield and experimental plots on Crown land across a wide range of spotted gum forest types. Growth algorithms were developed using tree growth and site data and the algorithms were used to formulate basic economic predictors. 2. Pasture development under a range of tree stockings and the expected livestock carrying capacity at nominated tree stockings for a particular area. 3. Above-ground tree biomass and carbon stored in trees. •A series of experiments in spotted gum forests on private lands across the study area to quantify growth and to provide measures of the effect of silvicultural thinning and different agro-forestry regimes. The adoption and use of these tools by farm forestry extension officers and private land holders in both field operations and in training exercises will, over time, improve the commercial management of spotted gum forests for both timber and grazing. Future measurement of the experimental sites at ages five, 10 and 15 years will provide longer term data on the effects of various stocking rates and thinning regimes and facilitate modification and improvement of these silvicultural prescriptions.
Resumo:
FRDC has commissioned a review of the role that existing and future genetic technologies may play in addressing critical challenges facing the exploitation of wild fisheries. Wild fisheries management has been assisted by genetic research for over 50 years and in Australia, this research has been largely funded by FRDC. Both fisheries management and the methods of genetic analysis have changed significantly during this time. Given these dynamics, as well as perceptions that communication between fisheries managers and geneticists has been poor in some cases, there is a strong need to reassess the ways in which genetic research can contribute to fisheries and for all stakeholders to critically examine each other's needs and capabilities.
Resumo:
Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in “omics” sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the “omics” science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia
Resumo:
Graminicolous Downy Mildew (GDM) diseases caused by the genera Peronosclerospora (13 spp.) and Sclerophthora (6 spp. and 1 variety) are poorly studied but destructive diseases of major crops such as corn, sorghum, sugarcane and other graminoids. Eight of the 13 described Peronosclerospora spp. are able to infect corn. In particular, P. philippinensis (= P. sacchari), P. maydis, P. heteropogonis, and S. rayssiae var. zeae cause major losses in corn yields in tropical Asia. In 2012 a new species, P. australiensis, was described based on isolates previously identified as P. maydis in Australia; this species is now a pathogen of major concern. Despite the strong impact of GDM diseases, there are presently no reliable molecular methods available for their detection. GDM pathogens are among the most difficult Oomycetes to identify using molecular tools, as their taxonomy is very challenging, and little genetic sequence data are available for development of molecular tools to detect GDM pathogens to species level. For example, from over 15 genes used in identification, diagnostics or phylogeny of Phytophthora, only ITS1 and cox2 show promise for use with GDM pathogens. Multiplex/multigene conventional and qPCR assays are currently under evaluation for the detection of economically important GDM spp. Scientists from the USA, Germany, Canada, Australia, and the Philippines are collaborating on the development and testing of diagnostic tools for these pathogens of concern.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.
Resumo:
This project describes how Streptococcus agalactiae can be transmitted experimentally in Queensland grouper. The implications of this research furthers the relatedness between Australian S. agalactiae strains from animals and humans. Additionally, this research has developed diagnostic tools for Australian State Veterinary Laboratories and Universities, which will assist in State and National aquatic animal disease detection, surveillance, disease monitoring and reporting