104 resultados para Crop yields
Resumo:
Information on the effects of growing cotton (Gossypium hirsutum L.)-based crop rotations on soil quality of dryland Vertisols is sparse. The objective of this study was to quantify the effects of growing cereal and leguminous crops in rotation with dryland cotton on physical and chemical properties of a grey Vertisol near Warra, SE Queensland, Australia. The experimental treatments, selected after consultations with local cotton growers, were continuous cotton (T1), cotton-sorghum (Sorghum bicolor (L.) Moench.) (T2), cotton-wheat (Triticum aestivum L.) double cropped (T3), cotton-chickpea (Cicer arietinum L.) double cropped followed by wheat (T4) and cotton-wheat (T5). From 1993 to 1996 land preparation was by chisel ploughing to about 0.2 m followed by two to four cultivations with a Gyral tyne cultivator. Thereafter all crops were sown with zero tillage except for cultivation with a chisel plough to about 0.07-0.1 m after cotton picking to control heliothis moth pupae. Soil was sampled from 1996 to 2004 and physical (air-filled porosity of oven-dried soil, an indicator of soil compaction; plastic limit; linear shrinkage; dispersion index) and chemical (pH in 0.01 M CaCl2, organic carbon, exchangeable Ca, Mg, K and Na contents) properties measured. Crop rotation affected soil properties only with respect to exchangeable Na content and air-filled porosity. In the surface 0.15 m during 2000 and 2001 lowest air-filled porosity occurred with T1 (average of 34.6 m3/100 m3) and the highest with T3 (average of 38.9 m3/100 m3). Air-filled porosity decreased in the same depth between 1997 and 1998 from 45.0 to 36.1 m3/100 m3, presumably due to smearing and compaction caused by shallow cultivation in wet soil. In the subsoil, T1 and T2 frequently had lower air-filled porosity values in comparison with T3, T4 and T5, particularly during the early stages of the experiment, although values under T1 increased subsequently. In general, compaction was less under rotations which included a wheat crop (T3, T4, T5). For example, average air-filled porosity (in m3/100 m3) in the 0.15-0.30 m depth from 1996 to 1999 was 19.8 with both T1 and T2, and 21.2 with T3, 21.1 with T4 and 21.5 with T5. From 2000 to 2004, average air-filled porosity (in m3/100 m3) in the same depth was 21.3 with T1, 19.0 with T2, 19.8 with T3, 20.0 with T4 and 20.5 with T5. The rotation which included chickpea (T4) resulted in the lowest exchangeable Na content, although differences among rotations were small. Where only a cereal crop with a fibrous root system was sown in rotation with cotton (T2, T3, T5) linear shrinkage in the 0.45-0.60 m depth was lower than in rotations, which included tap-rooted crops such as chickpea (T4) or continuous cotton (T1). Dispersion index and organic carbon decreased, and plastic limit increased with time. Soil organic carbon stocks decreased at a rate of 1.2 Mg/ha/year. Lowest average cotton lint yield occurred with T2 (0.54 Mg/ha) and highest wheat yield with T3 (2.8 Mg/ha). Rotations which include a wheat crop are more likely to result in better soil structure and cotton lint yield than cotton-sorghum or continuous cotton.
Resumo:
Australian researchers have been developing robust yield estimation models, based mainly on the crop growth response to water availability during the crop season. However, knowledge of spatial distribution of yields within and across the production regions can be improved by the use of remote sensing techniques. Images of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, available since 1999, have the potential to contribute to crop yield estimation. The objective of this study was to analyse the relationship between winter crop yields and the spectral information available in MODIS vegetation index images at the shire level. The study was carried out in the Jondaryan and Pittsworth shires, Queensland , Australia . Five years (2000 to 2004) of 250m resolution, 16-day composite of MODIS Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images were used during the winter crop season (April to November). Seasonal variability of the profiles of the vegetation index images for each crop season using different regions of interest (cropping mask) were displayed and analysed. Correlation analysis between wheat and barley yield data and MODIS image values were also conducted. The results showed high seasonal variability in the NDVI and EVI profiles, and the EVI values were consistently lower than those of the NDVI. The highest image values were observed in 2003 (in contrast to 2004), and were associated with rainfall amount and distribution. The seasonal variability of the profiles was similar in both shires, with minimum values in June and maximum values at the end of August. NDVI and EVI images showed sensitivity to seasonal variability of the vegetation and exhibited good association (e.g. r = 0.84, r = 0.77) with winter crop yields.
Resumo:
West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031–2060 compared to a baseline of 1961–1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16–20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate
Resumo:
The recent summary report of a Department of Energy Workshop on Plant Systems Biology (P.V. Minorsky [2003] Plant Physiol 132: 404-409) offered a welcomed advocacy for systems analysis as essential in understanding plant development, growth, and production. The goal of the Workshop was to consider methods for relating the results of molecular research to real-world challenges in plant production for increased food supplies, alternative energy sources, and environmental improvement. The rather surprising feature of this report, however, was that the Workshop largely overlooked the rich history of plant systems analysis extending over nearly 40 years (Sinclair and Seligman, 1996) that has considered exactly those challenges targeted by the Workshop. Past systems research has explored and incorporated biochemical and physiological knowledge into plant simulation models from a number of perspectives. The research has resulted in considerable understanding and insight about how to simulate plant systems and the relative contribution of various factors in influencing plant production. These past activities have contributed directly to research focused on solving the problems of increasing biomass production and crop yields. These modeling approaches are also now providing an avenue to enhance integration of molecular genetic technologies in plant improvement (Hammer et al., 2002).
Resumo:
Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.
Resumo:
Soils with high levels of chloride and/or sodium in their subsurface layers are often referred to as having subsoil constraints (SSCs). There is growing evidence that SSCs affect wheat yields by increasing the lower limit of a crop's available soil water (CLL) and thus reducing the soil's plant-available water capacity (PAWC). This proposal was tested by simulation of 33 farmers' paddocks in south-western Queensland and north-western New South Wales. The simulated results accounted for 79% of observed variation in grain yield, with a root mean squared deviation (RMSD) of 0.50 t/ha. This result was as close as any achieved from sites without SSCs, thus providing strong support for the proposed mechanism that SSCs affect wheat yields by increasing the CLL and thus reducing the soil's PAWC. In order to reduce the need to measure CLL of every paddock or management zone, two additional approaches to simulating the effects of SSCs were tested. In the first approach the CLL of soils was predicted from the 0.3-0.5 m soil layer, which was taken as the reference CLL of a soil regardless of its level of SSCs, while the CLL values of soil layers below 0.5 m depth were calculated as a function of these soils' 0.3-0.5 m CLL values as well as of soil depth plus one of the SSC indices EC, Cl, ESP, or Na. The best estimates of subsoil CLL values were obtained when the effects of SSCs were described by an ESP-dependent function. In the second approach, depth-dependent CLL values were also derived from the CLL values of the 0.3-0.5 m soil layer. However, instead of using SSC indices to further modify CLL, the default values of the water-extraction coefficient (kl) of each depth layer were modified as a function of the SSC indices. The strength of this approach was evaluated on the basis of correlation of observed and simulated grain yields. In this approach the best estimates were obtained when the default kl values were multiplied by a Cl-determined function. The kl approach was also evaluated with respect to simulated soil moisture at anthesis and at grain maturity. Results using this approach were highly correlated with soil moisture results obtained from simulations based on the measured CLL values. This research provides strong evidence that the effects of SSCs on wheat yields are accounted for by the effects of these constraints on wheat CLL values. The study also produced two satisfactory methods for simulating the effects of SSCs on CLL and on grain yield. While Cl and ESP proved to be effective indices of SSCs, EC was not effective due to the confounding effect of the presence of gypsum in some of these soils. This study provides the tools necessary for investigating the effects of SSCs on wheat crop yields and natural resource management (NRM) issues such as runoff, recharge, and nutrient loss through simulation studies. It also facilitates investigation of suggested agronomic adaptations to SSCs.
Resumo:
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.
Resumo:
Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.
Resumo:
Single or multiple factors implicated in subsoil constraints including salinity, sodicity, and phytotoxic concentrations of chloride (Cl) are present in many Vertosols including those occurring in Queensland, Australia. The variable distribution and the complex interactions that exist between these constraints limit the agronomic or management options available to manage the soil with these subsoil constraints. The identification of crops and cultivars adapted to these adverse subsoil conditions and/or able to exploit subsoil water may be an option to maintain productivity of these soils. We evaluated relative performance of 5 winter crop species, in terms of grain yields, nutrient concentration, and ability to extract soil water, grown on soils with various levels and combinations of subsoil constraints in 19 field experiments over 2 years. Subsoil constraints were measured by levels of soil Cl, electrical conductivity of the saturation extract (ECse), and exchangeable sodium percentage (ESP). Increasing levels of subsoil constraints significantly decreased maximum depth of water extraction, grain yield, and plant-available water capacity for all the 5 crops and more so for chickpea and durum wheat than bread wheat, barley, or canola. Increasing soil Cl levels had a greater restricting effect on water availability than did ECse and ESP. We developed empirical relationships between soil Cl, ECse, and ESP and crop lower limit (CLL) for estimating subsoil water extraction by 5 winter crops. However, the presence of gypsum influenced the ability to predict CLL based on the levels of ECse. Stronger relationships between apparent unused plant-available water (CLL - LL15; LL15 is lower limit at -1.5 MPa) and soil Cl concentrations than ESP or ECse suggested that the presence of high Cl in these soils most likely inhibited the subsoil water extraction by the crops. This was supported by increased sodium (Na) and Cl concentration with a corresponding decrease in calcium (Ca) and potassium (K) in young mature leaf of bread wheat, durum wheat, and chickpea with increasing levels of subsoil constraints. Of the 2 ions, Na and Cl, the latter appears to be more damaging than the former, resulting in plant dieback and reduced grain yields.
Resumo:
Two field experiments were carried out in Taveuni, Fiji to study the effects of mucuna (Mucuna pruriens) and grass fallow systems at 6 and 12 month durations on changes in soil properties (Experiment 1) and taro yields (Experiment 2). Biomass accumulation of mucuna fallow crop was significantly higher (P<0.05) than grass fallow crop at both 6 and 12 month durations. The longer fallow duration resulted in higher (P<0.05) total soil organic carbon, total soil nitrogen and earthworm numbers regardless of fallow type. Weed suppression in taro grown under mucuna was significantly greater (P<0.05) than under natural grass fallow. Taro grown under mucuna fallow significantly outyielded taro grown under grass fallow (11.8 vs. 8.8 t ha-1). Also, the gross margin of taro grown under mucuna fallow was 52% higher than that of taro grown under grass fallow. © ISHS.
Resumo:
Northern Australian dairy farms have a large area of tropical dryland grass pasture available for use as summer pastures. Late summer-autumn in sub-tropical Australia is traditionally a difficult period in which to produce milk because of the decline in both quality and quantity of tropical grasses (Ehrlich et al. 1994). Options to improve autumn feed on dairy farms include introducing forage crops and conservation, increasing concentrate feeding and introducing legumes. Perennial tropical legumes have not been successful at this time of year because of their inability to sustain stocking rates above one cow/ha. This experiment, conducted on farms, was designed to test if annual crop legumes could be successfully oversown into tropical grass areas using minimal till methods to measure the subsequent impact on milk production on farms. Previous experiments using annual legumes in plots at Mutdapilly Research Station had demonstrated yields up to 10 t/ha can be achieved using annual tropical legumes with protein levels as high as 20% in the whole legume plant. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.
Resumo:
Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the north-west of Mexico (CIANO) and sites across Australia during 3 seasons. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. Previously, we have evaluated both the performance of genotypes across environments and the genotype x environment interaction (G x E). The objective of this study was to interpret the G x E for yield in terms of crop attributes measured at individual sites and to identify the potential environmental drivers of this interaction. Groups of SBWs with consistent yield performance were identified, often comprising closely related lines. However, contrasting performance was also relatively common among sister lines or between a recurrent parent and its SBWs. Early flowering was a common feature among lines with broad adaptation and/or high yield in the northern Australian wheatbelt, while yields in the southern region did not show any association with the maturity type. Lines with high yields in the southern and northern regions had cooler canopies during flowering and early grain filling. Among the SBWs with Australian genetic backgrounds, lines best adapted to CIANO were tall (>100 cm), with a slightly higher ground cover. These lines also displayed a higher concentration of water-soluble carbohydrates in the stem at flowering, which was negatively correlated with stem number per unit area when evaluated in southern Australia (Horsham). Possible reasons for these patterns are discussed. Selection for yield at CIANO did not specifically identify the lines best adapted to northern Australia, although they were not the most poorly adapted either. In addition, groups of lines with specific adaptation to the south would not have been selected by choosing the highest yielding lines at CIANO. These findings suggest that selection at CIMMYT for Australian environments may be improved by either trait based selection or yield data combined with trait information. Flowering date, canopy temperature around flowering, tiller density, and water-soluble carbohydrate concentration in the stem at flowering seem likely candidates.
Resumo:
Salinity, sodicity, acidity, and phytotoxic levels of chloride (Cl) in subsoils are major constraints to crop production in many soils of north-eastern Australia because they reduce the ability of crop roots to extract water and nutrients from the soil. The complex interactions and correlations among soil properties result in multi-colinearity between soil properties and crop yield that makes it difficult to determine which constraint is the major limitation. We used ridge-regression analysis to overcome colinearity to evaluate the contribution of soil factors and water supply to the variation in the yields of 5 winter crops on soils with various levels and combinations of subsoil constraints in the region. Subsoil constraints measured were soil Cl, electrical conductivity of the saturation extract (ECse), and exchangeable sodium percentage (ESP). The ridge regression procedure selected several of the variables used in a descriptive model, which included in-crop rainfall, plant-available soil water at sowing in the 0.90-1.10 m soil layer, and soil Cl in the 0.90-1.10 m soil layer, and accounted for 77-85% of the variation in the grain yields of the 5 winter crops. Inclusion of ESP of the top soil (0.0-0.10 m soil layer) marginally increased the descriptive capability of the models for bread wheat, barley and durum wheat. Subsoil Cl concentration was found to be an effective substitute for subsoil water extraction. The estimates of the critical levels of subsoil Cl for a 10% reduction in the grain yield were 492 mg cl/kg for chickpea, 662 mg Cl/kg for durum wheat, 854 mg Cl/kg for bread wheat, 980 mg Cl/kg for canola, and 1012 mg Cl/kg for barley, thus suggesting that chickpea and durum wheat were more sensitive to subsoil Cl than bread wheat, barley, and canola.
Resumo:
Dwindling water supplies for irrigation are prompting alternative management choices by irrigators. Limited irrigation, where less water is applied than full crop demand, may be a viable approach. Application of limited irrigation to corn was examined in this research. Corn was grown in crop rotations with dryland, limited irrigation, or full irrigation management from 1985 to 1999. Crop rotations included corn following corn (continuous corn), corn following wheat, followed by soybean (wheat-corn-soybean), and corn following soybean (corn-soybean). Full irrigation was managed to meet crop evapotranspiration requirements (ETc). Limited irrigation was managed with a seasonal target of no more than 150 mm applied. Precipitation patterns influenced the outcomes of measured parameters. Dryland yields had the most variation, while fully irrigated yields varied the least. Limited irrigation yields were 80% to 90%> of fully irrigated yields, but the limited irrigation plots received about half the applied water. Grain yields were significantly different among irrigation treatments. Yields were not significantly different among rotation treatments for all years and water treatments. For soil water parameters, more statistical differences were detected among the water management treatments than among the crop rotation treatments. Economic projections of these management practices showed that full irrigation produced the most income if water was available. Limited irrigation increased income significantly from dryland management.
Resumo:
To facilitate marketing and export, the Australian macadamia industry requires accurate crop forecasts. Each year, two levels of crop predictions are produced for this industry. The first is an overall longer-term forecast based on tree census data of growers in the Australian Macadamia Society (AMS). This data set currently accounts for around 70% of total production, and is supplemented by our best estimates of non-AMS orchards. Given these total tree numbers, average yields per tree are needed to complete the long-term forecasts. Yields from regional variety trials were initially used, but were found to be consistently higher than the average yields that growers were obtaining. Hence, a statistical model was developed using growers' historical yields, also taken from the AMS database. This model accounted for the effects of tree age, variety, year, region and tree spacing, and explained 65% of the total variation in the yield per tree data. The second level of crop prediction is an annual climate adjustment of these overall long-term estimates, taking into account the expected effects on production of the previous year's climate. This adjustment is based on relative historical yields, measured as the percentage deviance between expected and actual production. The dominant climatic variables are observed temperature, evaporation, solar radiation and modelled water stress. Initially, a number of alternate statistical models showed good agreement within the historical data, with jack-knife cross-validation R2 values of 96% or better. However, forecasts varied quite widely between these alternate models. Exploratory multivariate analyses and nearest-neighbour methods were used to investigate these differences. For 2001-2003, the overall forecasts were in the right direction (when compared with the long-term expected values), but were over-estimates. In 2004 the forecast was well under the observed production, and in 2005 the revised models produced a forecast within 5.1% of the actual production. Over the first five years of forecasting, the absolute deviance for the climate-adjustment models averaged 10.1%, just outside the targeted objective of 10%.