23 resultados para Composite, FEM, Impact, Safety, SPH, Water Filled Barriers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major banana production areas in Australia are particularly sensitive to environments due to their close proximity to areas of World Heritage rainforest and the Great Barrier Reef catchment. Management of soil quality, nutrients and pesticides are vital to maintaining the integrity of these sensitive areas. Studies on cropping systems have suggested that integrating organic matter into ground cover management would improve the quality of soil under banana cultivation. In this study, an alternative management practice for bananas, which addresses the management of organic matter and fertiliser application, was assessed and compared to the conventional practice currently employed in the banana industry. Several chemical, physical and biological soil parameters were measured including: pH, electrical conductivity, water stable aggregates, bulk density, water filled pore space, porosity, water content, fluorescein diacetate hydrolyis (FDA) and beta-glucosidase activity. The alternative management practice did not have a significant impact of the production and growth of bananas but overall improved the quality of the soil. Although some differences were observed, the chemical and physical soil characteristics did not differ dramatically between the two management systems. The addition of organic matter resulted in the soil under alternative practice having higher FDA and beta-glucosidase levels, indicating higher microbial activity. The integration of organic matter into the management of bananas resulted in positive benefits on soil properties under bananas, however, methods of maintaining organic matter in the soil need to be further researched.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* Stay-green is an integrated drought adaptation trait characterized by a distinct green leaf phenotype during grain filling under terminal drought. We used sorghum (Sorghum bicolor), a repository of drought adaptation mechanisms, to elucidate the physiological and genetic mechanisms underpinning stay-green. * Near-isogenic sorghum lines (cv RTx7000) were characterized in a series of field and managed-environment trials (seven experiments and 14 environments) to determine the influence of four individual stay-green (Stg1–4) quantitative trait loci (QTLs) on canopy development, water use and grain yield under post-anthesis drought. * The Stg QTL decreased tillering and the size of upper leaves, which reduced canopy size at anthesis. This reduction in transpirational leaf area conserved soil water before anthesis for use during grain filling. Increased water uptake during grain filling of Stg near-isogenic lines (NILs) relative to RTx7000 resulted in higher post-anthesis biomass production, grain number and yield. Importantly, there was no consistent yield penalty associated with the Stg QTL in the irrigated control. * These results establish a link between the role of the Stg QTL in modifying canopy development and the subsequent impact on crop water use patterns and grain yield under terminal drought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a series of experiments conducted in stone fruit orchards in southern Australia, water-based funnel-type traps baited with synthetic aggregation pheromone and fermenting bread dough, trapped 3- to 7-fold as many Carpophihus beetles (primarily C. dauidsoni) than wind-oriented pipe traps or dry funnel traps. The efficacy of dry funnel traps but not pipe traps, appeared to be improved by using water-filled collecting bottles. The potential for using water-based funnel traps in population suppression of Carpophilus spp. in stone fruit orchards through mass trapping is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field experiment was carried out in southeastern Australia to assess the short-term mortality and stress incurred by juvenile school prawns (Metapenaeus macleayi) discarded from an estuarine trawler. Some 35% of the prawns died up to 72 h after being caught in a trawl, exposed to air during sorting and separation from the retained catch (as per normal commercial procedures), then discarded into replicate cages. Total mortality was partitioned into that caused by trawling (about 16% of mortalities), and by subsequent sorting and grading (about 19%). Assuming that the majority of the non-penaeid bycatch is excluded from trawls (by the use of bycatch reduction devices), the latter mortalities could be almost eliminated by sorting and separating unwanted school prawns in water-filled compartments. Emersion stress was measured as concentrations of l-lactate in the haemolymph, which were elevated for at least 40 min following capture, but similar among all trawled treatments. l-lactate levels decreased within the first 24 h post-capture, then remained constant over at least the next 48 h, and were greater than baseline levels. The potential benefits associated with subtle changes to handling practices onboard estuarine trawlers are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ammonia volatilised and re-deposited to the landscape is an indirect N2O emission source. This study established a relationship between N2O emissions, low magnitude NH4 deposition (0–30  kg N ha − 1 ), and soil moisture content in two soils using in-vessel incubations. Emissions from the clay soil peaked ( < 0.002 g N [ g soil ] − 1 min − 1 ) from 85 to 93% WFPS (water filled pore space), increasing to a plateau as remaining mineral-N increased. Peak N2O emissions for the sandy soil were much lower ( < 5 × 10 − 5 μg N [ g soil ] − 1 min − 1 ) and occurred at about 60% WFPS, with an indistinct relationship with increasing resident mineral N due to the low rate of nitrification in that soil. Microbial community and respiration data indicated that the clay soil was dominated by denitrifiers and was more biologically active than the sandy soil. However, the clay soil also had substantial nitrifier communities even under peak emission conditions. A process-based mathematical denitrification model was well suited to the clay soil data where all mineral-N was assumed to be nitrified ( R 2 = 90 % ), providing a substrate for denitrification. This function was not well suited to the sandy soil where nitrification was much less complete. A prototype relationship representing mineral-N pool conversions (NO3− and NH4+) was proposed based on time, pool concentrations, moisture relationships, and soil rate constants (preliminary testing only). A threshold for mineral-N was observed: emission of N2O did not occur from the clay soil for mineral-N <70 mg ( kg of soil ) − 1 , suggesting that soil N availability controls indirect N2O emissions. This laboratory process investigation challenges the IPCC approach which predicts indirect emissions from atmospheric N deposition alone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of maize simulation models to determine the optimum plant population for rainfed environments allows the evaluation of plant populations over multiple years and locations at a lower cost than traditional field experimentation. However the APSIM maize model that has been used to conduct some of these 'virtual' experiments assumes that the maximum rate of soil water extraction by the crop root system is constant across plant populations. This untested assumption may cause grain yield to be overestimated in lower plant populations. A field experiment was conducted to determine whether maximum rates of water extraction vary with plant population, and the maximum rate of soil water extraction was estimated for three plant populations (2.4, 3.5 and 5.5 plants m(-2)) under water limited conditions. Maximum soil water extraction rates in the field experiment decreased linearly with plant population, and no difference was detected between plant populations for the crop lower limit of soil water extraction. Re-analysis of previous maize simulation experiments demonstrated that the use of inappropriately high extraction-rate parameters at low plant populations inflated predictions of grain yield, and could cause erroneous recommendations to be made for plant population. The results demonstrate the importance of validating crop simulation models across the range of intended treatments. (C) 2013 Elsevier E.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two field experiments using maize (Pioneer 31H50) and three watering regimes [(i) irrigated for the whole crop cycle, until anthesis, (ii) not at all (experiment 1) and (iii) fully irrigated and rain grown for the whole crop cycle (experiment 2)] were conducted at Gatton, Australia, during the 2003-04 season. Data on crop ontogeny, leaf, sheath and internode lengths and leaf width, and senescence were collected at 1- to 3-day intervals. A glasshouse experiment during 2003 quantified the responses of leaf shape and leaf presentation to various levels of water stress. Data from experiment 1 were used to modify and parameterise an architectural model of maize (ADEL-Maize) to incorporate the impact of water stress on maize canopy characteristics. The modified model produced accurate fitted values for experiment 1 for final leaf area and plant height, but values during development for leaf area were lower than observed data. Crop duration was reasonably well fitted and differences between the fully irrigated and rain-grown crops were accurately predicted. Final representations of maize crop canopies were realistic. Possible explanations for low values of leaf area are provided. The model requires further development using data from the glasshouse study and before being validated using data from experiment 2 and other independent data. It will then be used to extend functionality in architectural models of maize. With further research and development, the model should be particularly useful in examining the response of maize production to water stress including improved prediction of total biomass and grain yield. This will facilitate improved simulation of plant growth and development processes allowing investigation of genotype by environment interactions under conditions of suboptimal water supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Better understanding of root system structure and function is critical to crop improvement in water-limited environments. The aims of this study were to examine root system characteristics of two wheat genotypes contrasting in tolerance to water limitation and to assess the functional implications on adaptation to water-limited environments of any differences found. The drought tolerant barley variety, Mackay, was also included to allow inter-species comparison. Single plants were grown in large, soil-filled root-observation chambers. Root growth was monitored by digital imaging and water extraction was measured. Root architecture differed markedly among the genotypes. The drought-tolerant wheat (cv. SeriM82) had a compact root system, while roots of barley cv. Mackay occupied the largest soil volume. Relative to the standard wheat variety (Hartog), SeriM82 had a more uniform rooting pattern and greater root length at depth. Despite the more compact root architecture of SeriM82, total water extracted did not differ between wheat genotypes. To quantify the value of these adaptive traits, a simulation analysis was conducted with the cropping system model APSIM, for a wide range of environments in southern Queensland, Australia. The analysis indicated a mean relative yield benefit of 14.5% in water-deficit seasons. Each additional millimetre of water extracted during grain filling generated an extra 55 kg ha-1 of grain yield. The functional implications of root traits on temporal patterns and total amount of water capture, and their importance in crop adaptation to specific water-limited environments, are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The APSIM-Wheat module was used to investigate our present capacity to simulate wheat yields in a semi-arid region of eastern Australia (the Victorian Mallee), where hostile subsoils associated with salinity, sodicity, and boron toxicity are known to limit grain yield. In this study we tested whether the effects of subsoil constraints on wheat growth and production could be modelled with APSIM-Wheat by assuming that either: (a) root exploration within a particular soil layer was reduced by the presence of toxic concentrations of salts, or (b) soil water uptake from a particular soil layer was reduced by high concentration of salts through osmotic effects. After evaluating the improved predictive capacity of the model we applied it to study the interactions between subsoil constraints and seasonal conditions, and to estimate the economic effect that subsoil constraints have on wheat farming in the Victorian Mallee under different climatic scenarios. Although the soils had high levels of salinity, sodicity, and boron, the observed variability in root abundance at different soil layers was mainly related to soil salinity. We concluded that: (i) whether the effect of subsoil limitations on growth and yield of wheat in the Victorian Mallee is driven by toxic, osmotic, or both effects acting simultaneously still requires further research, (ii) at present, the performance of APSIM-Wheat in the region can be improved either by assuming increased values of lower limit for soil water extraction, or by modifying the pattern of root exploration in the soil pro. le, both as a function of soil salinity. The effect of subsoil constraints on wheat yield and gross margin can be expected to be higher during drier than wetter seasons. In this region the interaction between climate and soil properties makes rainfall information alone, of little use for risk management and farm planning when not integrated with cropping systems models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sheep and cattle are frequently subjected to feed and water deprivation (FWD) for about 12 h before, and then during, transport to reduce digesta load in the gastrointestinal tract. This FWD is marked by weight loss as urine and faeces mainly in the first 24 h but continuing at a reduced rate subsequently. The weight of rumen contents falls although water loss is to some extent masked by saliva inflow. FWD is associated with some stress, particularly when transportation is added. This is indicated by increased levels of plasma cortisol that may be partly responsible for an observed increase in the output of water and N in urine and faeces. Loss of body water induces dehydration that may induce feelings of thirst by effects on the hypothalamus structures through the renin-angiotensin-aldosterone system. There are suggestions that elevated cortisol levels depress angiotensin activity and prevent sensations of thirst in dehydrated animals, but further research in this area is needed. Dehydration coupled with the discharge of Na in urine challenges the maintenance of homeostasis. In FWD, Na excretion in urine is reduced and, with the reduction in digesta load, Na is gradually returned from the digestive tract to the extracellular fluid space. Control of enteropathogenic bacteria by normal rumen microbes is weakened by FWD and resulting infections may threaten animal health and meat safety. Recovery time is required after transport to restore full feed intake and to ensure that adequate glycogen is present in muscle pre-slaughter to maintain meat quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stephen Setter, Melissa Setter, Michael Graham and Joe Vitelli recently published their paper 'Buoyancy and germination of pond apple (Annona glabra L.) propagules in fresh and salt water' in Proceedings of the 16th Australian Weeds Conference. Stephen also presented this paper at the conference. Pond apple is an aggressive woody weed which has invaded many wetlands, drainage lines and riparian systems across the Wet Tropics bioregion of Far North Queensland. Most fruit and seed produced by pond apple during the summer wet season fall directly into creeks, river banks, flood plains and swamps from where they are dispersed. They reported that pond apple seeds can float for up to 12 months in either fresh or salt water, with approximately 38% of these seeds germinating in a soil medium once removed from the experimental water tanks at South Johnstone. Their study suggested that the removal of reproductive trees from areas adjacent to creeks and rivers will have an immediate impact on potential spread of pond apple by limiting seed input into flowing water bodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project reviewed international research conducted on the possible role of plants in alleviating high temperatures in our living spaces. The literature review served to identify the work that has already been carried out in the area and to highlight the gaps to be filled by experimental research. A pilot study then investigated the thermal properties of six of the most common landscaping materials. This project clearly shows that plants can play a significant role in modifying the thermal conditions of urban environments. Tall trees can shade nearby buildings and allow for reductions in cooling costs. In addition to basic shading, the dispersal of heat via the plant’s natural transpiration stream has long been recognised as an important component of the urban energy balance. It has been shown that urban temperatures can be up to 7°C higher than nearby rural areas, illustrating the impact of plants on their environment. These benefits argue against the idea of removing plants from landscapes in order to save on water in times of drought. Similarly, the idea of switching to artificial turf is questionable, since artificial turf still requires watering and can reach temperatures that far exceed the safe range for players. While vegetation offers evaporative cooling, non-vegetative, impervious surfaces such as concrete do not, and can therefore cause greater surface and soil temperatures. In addition, the higher temperatures associated with these impervious surfaces can negatively affect the growth of plants in surrounding areas. Permeable surfaces, such as mulches, have better insulating properties and can prevent excessive heating of the soil. However, they can also lead to an increase in reflected longwave radiation, causing the leaves of plants to close their water-conducting pores and reducing the beneficial cooling effects of transpiration. The results show that the energy balance of our surroundings is complicated and that all components of a landscape will have an impact on thermal conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diminishing water supply, changing weather patterns and pressure to enhance environmental flows are making it imperative to optimise water use efficiency (WUE) on cotton/grain farming systems. Growers are looking for better strategies to make the best use of limited water, but it is still not clear how to best use the available water at farm and field scale. This research project investigated the impact of management strategies to deal with limited water supplies on the yield and quality of irrigated cotton and wheat. The objectives were: (1) to develop irrigation management guidelines for the main irrigated crops on the Darling Downs for full- and deficitirrigation scenarios, taking into account the critical factors that affect irrigation decisions at the local level, (2) to quantify the evapotranspiration (ET) of Bollgard II cotton and wheat and its relationship to yield and quality under full- and deficit-irrigation scenarios, and (3) to increase industry awareness and education of farming systems practises for optimised economic water use efficiency.Objective (1) was addressed by (A) collaborating with ASPRU to develop the APSFarm model within APSIM to be able to perform multi-paddock simulations. APSFarm was then tested by conducting a case study at a farm near Dalby, and (B) conducting semi-structured interviews with individual farmers and crop consultants on the Darling Downs to document the strategies they are using to deal with limited water. Objective (2) was addressed by (A) building and installing 12 large (1 m x 1m x 1.5 m) weighing lysimeters to measure crop evapotranspiration. The lysimeters were installed at the Agri-Science Queensland research station at Kingsthorpe in November 2008, (B) conducting field experiments to measure crop evapotranspiration and crop development under four irrigation treatments, including dryland, deficit-irrigation, and full irrigation. Field experiments were conducted with cotton in 2007-08 and 2008-09, and with wheat in 2008 and 2009, and (C) collaborating with USQ on a PhD thesis to quantify the impact of crop stress on crop evapotranspiration and canopy temperature. Glasshouse experiments were conducted with wheat in 2008 and with cotton in 2008-09. Objective (3) was addressed by (A) conducting a field day at Kingsthorpe in 2009, which was attended by 80 participants, (B) presenting information in conferences in Australia and overseas, (D) presenting information at farmers meeting, (E) making presentations to crop consultants, and (F) preparing extension publications.As part of this project we contributed to the development of APSfarm, which has been successfully applied to evaluate the feasibility of practices at the whole-farm scale. From growers and crop consultants interviews we learned that there is a great variety of strategies, at different scales, that they are using to deal with limited water situation. These strategies will be summarised in the "e;Limited Water Guidelines for the Darling Downs"e; that we are currently preparing. As a result of this project, we now have a state-of-the-art lysimeter research facility (23 large weighing lysimeters) to be able to conduct replicated experiments to investigate daily water use of a variety of crops under different irrigation regimes and under different environments. Under this project, a series of field and glasshouse experiments were conducted with cotton and wheat, investigating aspects like: (A) quantification of daily and seasonal crop water use under nonstressed and stressed conditions, (B) impact of row configuration on crop water use, (C) impact of water stress on yield, evapotranspiration, crop vegetative and reproductive development, soil water extraction pattern, yield and yield quality. The information obtained from this project is now being used to develop web-based tools to help growers make planning and day-to-day irrigation decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of excessive sediment loads entering into the Great Barrier Reef lagoon has led to increased awareness of land condition in grazing lands. Improved ground cover and land condition have been identified as two important factors in reducing sediment loads. This paper reports the economics of land regeneration using case studies for two different land types in the Fitzroy Basin. The results suggest that for sediment reduction to be achieved from land regeneration of more fertile land types (brigalow blackbutt) the most efficient method of allocating funds would be through extension and education. However for less productive country (narrow leaved ironbark woodlands) incentives will be required. The analysis also highlights the need for further scientific data to undertake similar financial assessments of land regeneration for other locations in Queensland.