27 resultados para Browntail moth.
Resumo:
Field surveys of egg parasitoids of the diamondback moth, Plutella xylostella, were conducted at Redlands and Gatton, south-east Queensland. Eggs of P. xylostella were present all year round in both localities, and parasitized eggs were consistently found between late spring and early winter. Percent parasitism in the range 30–75% was recorded on many occasions, although rates less than 10% were more common. The major parasitoids included Trichogrammatoidea bactrae Nagaraja and Trichogramma pretiosum Riley. Laboratory evaluation showed that the T. pretiosum from Gatton has a high capacity to parasitize P. xylostella eggs under suitable conditions. This study represents the first record of egg parasitoids of P. xylostella from Australia.
Resumo:
Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha-') provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20~40 L ha-'). The PB-20 provided better spray coverage on the upper surface of middle leaves and both Surfaces of outer leaves when compared with the Selecta I2V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha - ' for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers
Resumo:
The enemy release hypothesis predicts that native herbivores will either prefer or cause more damage to native than introduced plant species. We tested this using preference and performance experiments in the laboratory and surveys of leaf damage caused by the magpie moth Nyctemera amica on a co-occuring native and introduced species of fireweed (Senecio) in eastern Australia. In the laboratory, ovipositing females and feeding larvae preferred the native S. pinnatifolius over the introduced S. madagascariensis. Larvae performed equally well on foliage of S. pinnatifolius and S. madagascariensis: pupal weights did not differ between insects reared on the two species, but growth rates were significantly faster on S. pinnatifolius. In the field, foliage damage was significantly greater on native S. pinnatifolius than introduced S. madagascariensis. These results support the enemy release hypothesis, and suggest that the failure of native consumers to switch to introduced species contributes to their invasive success. Both plant species experienced reduced, rather than increased, levels of herbivory when growing in mixed populations, as opposed to pure stands in the field; thus, there was no evidence that apparent competition occurred.
Resumo:
Cat's claw creeper, Macfadyena unguis-cati, a major environmental weed in coastal and sub-coastal areas of Queensland and New South Wales, Australia is a target for classical biological control. Host specificity of Hypocosmia pyrochroma Jones (Lep., Pyralidae), as a potential biological control agent was evaluated on the basis of no-choice and choice larval feeding and survival, and adult oviposition preference tests, involving 38 plant species in 10 families. In no-choice tests, larval feeding and development occurred only on cat's claw creeper. In choice tests, oviposition and larval development was evident only on cat's claw creeper. The results support the host-specificity tests conducted in South Africa, and suggest that H. pyrochroma is a highly specific biological control agent that does not pose any risk to non-target plants tested in Australia. This agent has been approved for field release by relevant regulatory authorities in Australia.
Resumo:
Painted apple moth Teia anartoides Walker (Lepidoptera: Lymantriidae), a native to Australia, was discovered in Auckland, New Zealand in late 1999 and eradicated by 2006. It was recognised in 2002 that biological control would be the most effective long-term control strategy if eradication was unsuccessful, and a search was initiated for potential biocontrol agents in Australia. In 2003, autumn and spring surveys were undertaken in Victoria, Tasmania and South Australia of the guild of parasitoid natural enemies of T. anartoides. Eggs, larvae and pupae were collected and held to rear out any parasitoids. In addition, localised searches were made in Queensland in late 2003 early 2004 and laboratory-reared juvenile stages of T. anartoides were released for recapture in both Victoria and Queensland. Acacia dealbata Link (Fabales: Fabaceae) was the main plant from which T. anartoides was recovered, followed by apple. Most T. anartoides samples were collected from Victoria and Tasmania. Eighteen species from 13 genera of egg, larval and pupal parasitoids were reared and included Diptera (Tachinidae) and Hymenoptera (Braconidae, Encyrtidae, Eulophidae and Ichneumonidae). Of the seven Hymenopteran genera recovered from the larval stage, the most common in Victoria and Tasmania was a previously unidentified larval parasitoid Cotesia Cameron (Hymenoptera: Braconidae) sp. Echthromorpha intricatoria (Fabricius) (Hymenoptera: Ichneumonidae) was the dominant pupal parasitoid. The survey showed that the parasitoid complex associated with T anartoides is structurally very similar to that on other pest Lymantriidae in the northern hemisphere such as gypsy moth (Lymantria dispar L.) (Lepidoptera: Lymantriidae). Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) was recorded for the first time in Australia.
Resumo:
The leaf-tying moth Hypocosmia pyrochroma Jones (Lepidoptera: Pyralidae), a native of sub tropical South America, has been introduced as a biological control agent for cat’s claw creeper, Dolichandra unguis-cati (L.) Lohman (Bignoniaceae), in Australia and South Africa. So far there has been no evidence of its field establishment in either country. A narrow temperature tolerance is a potential limiting factor for the establishment of weed biological control insects in novel habitats. In this study, we evaluated the effect of seven constant temperatures (12–40 °C) on the survival and development of H. pyrochroma in temperature-controlled cabinets. Temperatures between 20 and 30 °C were the most favorable for adult survival, oviposition, egg hatching, and larval and pupal development. Adult survival (12–40 °C) and egg development (15–35 °C) showed tolerance for wider temperature ranges than oviposition, and larval and pupal development, which were all negatively affected by both high (>30 °C) and low (<20 °C) temperatures. The degree-day (DD) requirement to complete a generation was estimated as 877 above a threshold temperature of 12 °C. Based on DD requirements and an obligatory winter diapause of pupae from mid-autumn to mid-spring, the potential number of generations (egg to adult) the leaf-tying moth can complete in a year in Australia or South Africa range from one to three. A climate-matching model predicted that the inland regions of both Australia and South Africa are less favorable for H. pyrochroma than the coastal areas. The study suggested that H. pyrochroma is more likely to establish in the coastal areas of Australia where most of the cat’s claw creeper infestations occur, than in South Africa where most of the cat’s claw creeper infestations are inland.
Resumo:
The leaf-tying moth Hypocosmia pyrochroma Jones (Lepidoptera: Pyralidae), a native of sub tropical South America, has been introduced as a biological control agent for cat’s claw creeper, Dolichandra unguis-cati (L.) Lohman (Bignoniaceae), in Australia and South Africa. So far there has been no evidence of its field establishment in either country. A narrow temperature tolerance is a potential limiting factor for the establishment of weed biological control insects in novel habitats. In this study, we evaluated the effect of seven constant temperatures (12–40 °C) on the survival and development of H. pyrochroma in temperature-controlled cabinets. Temperatures between 20 and 30 °C were the most favorable for adult survival, oviposition, egg hatching, and larval and pupal development. Adult survival (12–40 °C) and egg development (15–35 °C) showed tolerance for wider temperature ranges than oviposition, and larval and pupal development, which were all negatively affected by both high (>30 °C) and low (<20 °C) temperatures. The degree-day (DD) requirement to complete a generation was estimated as 877 above a threshold temperature of 12 °C. Based on DD requirements and an obligatory winter diapause of pupae from mid-autumn to mid-spring, the potential number of generations (egg to adult) the leaf-tying moth can complete in a year in Australia or South Africa range from one to three. A climate-matching model predicted that the inland regions of both Australia and South Africa are less favorable for H. pyrochroma than the coastal areas. The study suggested that H. pyrochroma is more likely to establish in the coastal areas of Australia where most of the cat’s claw creeper infestations occur, than in South Africa where most of the cat’s claw creeper infestations are inland.
Resumo:
The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95 of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.
Resumo:
Fruit-piercing moths are significant pests of a range of fruit crops throughout much of the world's tropics and subtropics. Feeding damage by the adult moths is most widely reported in varieties of citrus. In the years 2003 and 2004, fruit-piercing moth activity was observed regularly at night in citrus crops in northeast Australia, to determine the level of maturity (based on rind colour) and soundness of fruit attacked. 'Navelina' navel and 'Washington' navel orange, grapefruit and mixed citrus crops were assessed, and fruit was rated and placed into five categories: green, colouring, ripe, overripe and damaged. There were no statistical differences in the percentage of fruit attacked in each category across crops. However, within the individual crops significant proportions of green 'Navelina' fruit (58.7%) and green mixed citrus (57.1%) were attacked in 2004. Among all the crops assessed, 25.1% of moth feeding occurred on overripe or damaged fruit. Crops started to be attacked at least 8 weeks before picking, but in two crops there were large influxes of moths (reaching 27 and 35 moths/100 trees, respectively) immediately before harvest. Moth activity was most intense between late February and late March. Eudocima fullonia (Clerck) represented 79.1% of all moths recorded on fruit, with Eudocima materna (L.), Eudocima salaminia (Cramer) and Serrodes campana (Guen.) the only other species observed capable of inflicting primary damage. Our results suggest that growers should monitor moth activity from 8 weeks before harvest and consider remedial action if moth numbers increase substantially as the crop matures or there is a history of moth problems. The number of fruit pickings could be increased to progressively remove ripe fruit or early harvest of the entire crop contemplated if late influxes of moths are known.
Resumo:
When investigating strategies for Helicoverpa armigera (Hubner) control, it is important to understand oviposition behaviour. Cotton (Gossypium hirsutum) was sown into standing wheat (Triticum astivum L.) stubble in a closed arena to investigate the effect of stubble on H. armigera moth behaviour and oviposition. Infrared cameras were used to track moths and determine whether stubble acted as a physical barrier or provided camouflage to cotton plants, thereby reducing oviposition. Searching activity was observed to peak shortly before dawn (03:00 and 04:00 h) and remained high until just after dawn (4 h window). Moths spent more time resting on cotton plants than spiralling above them, and the least time flying across the arena. While female moths spent more time searching for cotton plants growing in wheat stubble, the difference in oviposition was not significant. As similar numbers of eggs were laid on cotton plants with stubble (3.5/plant SE +/- 0.87) and without stubble (2.5/plant SE +/- 0.91), wheat stubble does not appear to provide camouflage to cotton plants. There was no significant difference in the location of eggs deposited on cotton plants with and without stubble, although more eggs were laid on the tops of cotton leaves in wheat stubble. As the spatial and temporal distribution of eggs laid on the cotton plant is a crucial component of population stability, eggs laid on the upper side of leaves on cotton plants may be more prone to fatalities caused by environmental factors such as wind and rain. Therefore, although stubble did not influence the number of eggs laid, it did affect their distribution on the plant, which may result in increased mortality of eggs on cotton plants sown into standing wheat stubble.
Resumo:
Mixtures of single odours were used to explore the receptor response profile across individual antennae of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Seven odours were tested including floral and green-leaf volatiles: phenyl acetaldehyde, benzaldehyde, b-caryophyllene, limonene, a-pinene, 1-hexanol, 3Z-hexenyl acetate. Electroantennograms of responses to paired mixtures of odours showed that there was considerable variation in receptor tuning across the receptor field between individuals. Data from some moth antennae showed no additivity, which indicated a restricted receptor profile. Results from other moth antennae to the same odour mixtures showed a range of partial additivity. This indicated that a wider array of receptor types was present in these moths, with a greater percentage of the receptors tuned exclusively to each odour. Peripheral receptor fields show variation in the spectrum of response within a population (of moths) when exposed to high doses of plant volatiles. This may be related to recorded variation in host choice within moth populations as reported by other authors.
Resumo:
This study provides comprehensive documentation of silk production in the pest moth Helicoverpa armigera from gland secretion to extrusion of silk thread. The structure of the silk glands, accessory structures and extrusion apparatus are reported. The general schema of the paired silk glands follows that found for Lepidoptera. Morphology of the duct, silk press, muscle attachments and spigot are presented as a three-dimensional reconstruction and the cuticular crescent-shaped profile of the silk press is demonstrated in both open and closed forms with attendant muscle blocks, allowing advances in our knowledge of how the silk press functions to regulate the extrusion of silk. Growth of the spigot across instars is documented showing a distinctive developmental pattern for this extrusion device. Its shape and structure are related to use and load-bearing activity.
Resumo:
The efficacy of insecticides in controlling Helicoverpa spp., predominantly H. armigera (Hubner), on capsicum and zucchini was tested in small plot trials. Indoxacarb, methoxyfenozide, spinosad, emamectin benzoate and novaluron provided control, as measured by the percentage of damaged fruit, equal to or better than standard treatments of methomyl or methomyl alternated with methamidophos on capsicum. The Helicoverpa nucleopolyhedrovirus gave control equivalent to the standard treatment, as did Bacillus thuringiensis aizawai, but B. thuringiensis kurstaki was ineffective. Helicoverpa armigera larvae were present in zucchini flowers but did little damage to the fruit. None of the insecticides significantly reduced the percentage of damaged zucchini fruit compared with the untreated control. Bifenthrin, spinosad, emamectin benzoate and methoxyfenozide were effective in controlling larvae in flowers, while methomyl, B. thuringiensis aizawai, B. thuringiensis kurstaki and novaluron were not effective. Data indicated that all the insecticides effectively controlled larvae of Diaphania indica (Saunders), cucumber moth, in the zucchini flowers. There has been a limited range of insecticides available to manage Helicoverpa spp. in these vegetable crops, but these trials demonstrate the effectiveness of a number of newer insecticides that could be used and that would be compatible with integrated pest management programs in the crops.
Resumo:
Information on the effects of growing cotton (Gossypium hirsutum L.)-based crop rotations on soil quality of dryland Vertisols is sparse. The objective of this study was to quantify the effects of growing cereal and leguminous crops in rotation with dryland cotton on physical and chemical properties of a grey Vertisol near Warra, SE Queensland, Australia. The experimental treatments, selected after consultations with local cotton growers, were continuous cotton (T1), cotton-sorghum (Sorghum bicolor (L.) Moench.) (T2), cotton-wheat (Triticum aestivum L.) double cropped (T3), cotton-chickpea (Cicer arietinum L.) double cropped followed by wheat (T4) and cotton-wheat (T5). From 1993 to 1996 land preparation was by chisel ploughing to about 0.2 m followed by two to four cultivations with a Gyral tyne cultivator. Thereafter all crops were sown with zero tillage except for cultivation with a chisel plough to about 0.07-0.1 m after cotton picking to control heliothis moth pupae. Soil was sampled from 1996 to 2004 and physical (air-filled porosity of oven-dried soil, an indicator of soil compaction; plastic limit; linear shrinkage; dispersion index) and chemical (pH in 0.01 M CaCl2, organic carbon, exchangeable Ca, Mg, K and Na contents) properties measured. Crop rotation affected soil properties only with respect to exchangeable Na content and air-filled porosity. In the surface 0.15 m during 2000 and 2001 lowest air-filled porosity occurred with T1 (average of 34.6 m3/100 m3) and the highest with T3 (average of 38.9 m3/100 m3). Air-filled porosity decreased in the same depth between 1997 and 1998 from 45.0 to 36.1 m3/100 m3, presumably due to smearing and compaction caused by shallow cultivation in wet soil. In the subsoil, T1 and T2 frequently had lower air-filled porosity values in comparison with T3, T4 and T5, particularly during the early stages of the experiment, although values under T1 increased subsequently. In general, compaction was less under rotations which included a wheat crop (T3, T4, T5). For example, average air-filled porosity (in m3/100 m3) in the 0.15-0.30 m depth from 1996 to 1999 was 19.8 with both T1 and T2, and 21.2 with T3, 21.1 with T4 and 21.5 with T5. From 2000 to 2004, average air-filled porosity (in m3/100 m3) in the same depth was 21.3 with T1, 19.0 with T2, 19.8 with T3, 20.0 with T4 and 20.5 with T5. The rotation which included chickpea (T4) resulted in the lowest exchangeable Na content, although differences among rotations were small. Where only a cereal crop with a fibrous root system was sown in rotation with cotton (T2, T3, T5) linear shrinkage in the 0.45-0.60 m depth was lower than in rotations, which included tap-rooted crops such as chickpea (T4) or continuous cotton (T1). Dispersion index and organic carbon decreased, and plastic limit increased with time. Soil organic carbon stocks decreased at a rate of 1.2 Mg/ha/year. Lowest average cotton lint yield occurred with T2 (0.54 Mg/ha) and highest wheat yield with T3 (2.8 Mg/ha). Rotations which include a wheat crop are more likely to result in better soil structure and cotton lint yield than cotton-sorghum or continuous cotton.