106 resultados para Biological cycle
Resumo:
Prickly acacia (Vachellia nilotica subsp. indica), a native of the Indian subcontinent, is a serious weed of the grazing areas of northern Australia and is a target for classical biological control. Native range surveys in India identified a leaf webber, Phycita sp. (Lepidoptera: Pyralidae) as a prospective biological control agent for prickly acacia. In this study, we report the life cycle and host-specificity test results Phycita sp. and highlight the contradictory results between the no-choice tests in India and Australia and the field host range in India. In no-choice tests in India and Australia, Phycita sp. completed development on two of 11 and 16 of 27 non-target test plant species, respectively. Although Phycita sp. fed and completed development on two non-target test plant species (Vachellia planifrons and V. leucophloea) in no-choice tests in India, there was no evidence of the insect on the two non-target test plant species in the field. Our contention is that oviposition behaviour could be the key mechanism in host selection of Phycita sp., resulting in its incidence only on prickly acacia in India. This is supported by paired oviposition choice tests involving three test plant species (Acacia baileyana, A. mearnsii and A. deanei) in quarantine in Australia, where eggs were laid only on prickly acacia. However, in paired oviposition choice trials, only few eggs were laid, making the results unreliable. Although oviposition choice tests suggest that prickly acacia is the most preferred and natural host, difficulties in conducting choice oviposition tests with fully grown trees under quarantine conditions in Australia and the logistic difficulties of conducting open-field tests with fully grown native Australian plants in India have led to rejection of Phycita sp. as a potential biological control agent for prickly acacia in Australia.
Resumo:
While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.
Resumo:
The geometrid caterpillar Isturgia deerraria was imported from Kenya into quarantine facilities in Australia as a potential biological control agent for prickly acacia, Acacia nilotica subsp. indica (Benth.) Brenan (family Mimosaceae). The insect was then tested on 30 plant species presented to neonate larvae as a no-choice cut foliage test and 13 plant species presented as a no-choice potted plant test. In these tests the insect was able to complete its life cycle on 13 native Acacia spp. and also on Acacia farnesiana and the exotic ornamental Delonix regia (family Caesalpiniaceae). The tests supported field observations that the insect has a host range spanning many leguminous species and as such the insect could not be considered for release in Australia.
Resumo:
Mikania micrantha Kunth (Asteraceae), commonly known as ‘mile-a-minute’, is a neotropical plant species now found in 17 Pacific island countries and territories, invading small cropping areas and plantations, thereby reducing productivity and food security. In 2006, a biocontrol project on M. micrantha commenced in Fiji and Papua New Guinea (PNG). The distribution of M. micrantha as well as baseline data such as plant growth rates and socio-economic impacts were determined before the importation of any biocontrol agents. Mikania micrantha was recorded in all 15 lowland provinces in PNG and on all major islands in Fiji. Plants grow about 3.2cm/day in PNG and about 1.9cm/day in Fiji. A socio-economic survey, involving over 370 respondents in over 220 villages from 15 provinces in PNG, found that 78% of respondents considered M. micrantha a serious weed and about 44% had M. micrantha, which they needed to weed at least fortnightly, in over a third of their land. Over 80% of respondents used slashing and/or handpulling as the preferred method of weed control. About 40% of respondents considered that M. micrantha reduced crop yield by more than 30%. In Fiji, 52 respondents from four islands participated in the survey. Over 60% of respondents in Fiji considered M. micrantha a serious weed and 23% had about 30% of their farm lands infested with the weed. Only 15% of respondents needed to weed at least fortnightly, with 56% using slashing and/or hand-pulling as the preferred means of control. Over 65% of respondents estimated that they lost at least 30% of potential crop yield to M. micrantha. Nearly 90% of respondents used M. micrantha as a medicinal plant to treat cuts and wounds. The life history of the rust Puccinia spegazzinii de Toni (Pucciniales: Pucciniaceae), originating from Ecuador, and imported into PNG and Fiji in 2008, was studied. P. spegazzinii is a microcyclic and autoecious rust and has a life cycle of 18-22 days. An efficient culturing and field release method was developed. Since 2008, the rust has been released at over 450 sites in 15 provinces in PNG, establishing at nearly 70 sites in four provinces. From some sites, the rust has spread over 7 km in 12 months. In Fiji, the rust has been released at over 80 sites, on four of the main islands, namely Viti Levu, Vanua Levu, Taveuni and Ovalau, and has established at 20 sites on Viti Levu and Vanua Levu. Plant growth studies and field monitoring in PNG showed that P. spegazzinii can significantly reduce the growth and density of M. micrantha and offers great potential for the control of this weed.
Resumo:
Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha-') provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20~40 L ha-'). The PB-20 provided better spray coverage on the upper surface of middle leaves and both Surfaces of outer leaves when compared with the Selecta I2V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha - ' for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers
Resumo:
The seed-feeding jewel bug, Agonosoma trilineatum (F.), is an introduced biological control agent for bellyache bush, Jatropha gossypiifolia L. To quantify the damage potential of this agent, shadehouse experiments were conducted with individual bellyache bush plants exposed to a range of jewel bug densities (0, 6 or 24 jewel bugs/plant). The level of abortion of both immature and mature seed capsules and impacts on seed weight and seed viability were recorded in an initial short-term study. The ability of the jewel bug to survive and cause sustained damage was then investigated by measuring seed production, the survival of adults and nymph density across three 6-month cycles. The level of seed capsule abortion caused by the jewel bug was significantly affected by the maturity status of capsules and the density of insects present. Immature capsules were most susceptible and capsule abortion increased with jewel bug density. Similarly, on average, the insects reduced the viability of bellyache bush seeds by 79% and 89% at low and high densities, respectively. However, sustaining jewel bug populations for prolonged periods proved difficult. Adult survival at the end of three 6-month cycles averaged 11% and associated reductions in viable seed production ranged between 55% and 77%. These results suggest that the jewel bug has the potential to reduce the number of viable seeds entering the soil seed bank provided populations can be established and maintained at sufficiently high densities.
Resumo:
In this study, we examined the photosynthetic responses of five common seagrass species from a typical mixed meadow in Torres Strait at a depth of 5–7 m using pulse amplitude modulated (PAM) fluorometry. The photosynthetic response of each species was measured every 2 h throughout a single daily light cycle from dawn (6 am) to dusk (6 pm). PAM fluorometry was used to generate rapid light curves from which measures of electron transport rate (ETRmax), photosynthetic efficiency (α), saturating irradiance (Ek) and light-adapted quantum yield (ΔF/F′m) were derived for each species. The amount of light absorbed by leaves (absorption factor) was also determined for each species. Similar diurnal patterns were recorded among species with 3–4 fold increases in maximal electron rate from dawn to midday and a maintenance of ETRmax in the afternoon that would allow an optimal use of low light by all species. Differences in photosynthetic responses to changes in the daily light regime were also evident with Syringodium isoetifolium showing the highest photosynthetic rates and saturating irradiances suggesting a competitive advantage over other species under conditions of high light. In contrast Halophila ovalis, Halophila decipiens and Halophila spinulosa were characterised by comparatively low photosynthetic rates and minimum light requirements (i.e. low Ek) typical of shade adaptation. The structural makeup of each species may explain the observed differences with large, structurally complex species such as Syringodium isoetifolium and Cymodocea serrulata showing high photosynthetic effciciencies (α) and therefore high-light-adapted traits (e.g. high ETRmax and Ek) compared with the smaller Halophila species positioned lower in the canopy. For the smaller Halophila species these shade-adapted traits are features that optimise their survival during low-light conditions. Knowledge of these characteristics and responses improves our understanding of the underlying causes of changes in seagrass biomass, growth and survival that occur when modifications in light quantity and quality arise from anthropogenic and climatic disturbances that commonly occur in Torres Strait.
Resumo:
Background: Crustaceans represent an attractive model to study biomineralization and cuticle matrix formation, as these events are precisely timed to occur at certain stages of the moult cycle. Moulting, the process by which crustaceans shed their exoskeleton, involves the partial breakdown of the old exoskeleton and the synthesis of a new cuticle. This cuticle is subdivided into layers, some of which become calcified while others remain uncalcified. The cuticle matrix consists of many different proteins that confer the physical properties, such as pliability, of the exoskeleton. Results: We have used a custom cDNA microarray chip, developed for the blue swimmer crab Portunus pelagicus, to generate expression profiles of genes involved in exoskeletal formation across the moult cycle. A total of 21 distinct moult-cycle related differentially expressed transcripts representing crustacean cuticular proteins were isolated. Of these, 13 contained copies of the cuticle_1 domain previously isolated from calcified regions of the crustacean exoskeleton, four transcripts contained a chitin_bind_4 domain (RR consensus sequence) associated with both the calcified and un-calcified cuticle of crustaceans, and four transcripts contained an unannotated domain (PfamB_109992) previously isolated from C. pagurus. Additionally, cryptocyanin, a hemolymph protein involved in cuticle synthesis and structural integrity, also displays differential expression related to the moult cycle. Moult stage-specific expression analysis of these transcripts revealed that differential gene expression occurs both among transcripts containing the same domain and among transcripts containing different domains. Conclusion: The large variety of genes associated with cuticle formation, and their differential expression across the crustacean moult cycle, point to the complexity of the processes associated with cuticle formation and hardening. This study provides a molecular entry path into the investigation of the gene networks associated with cuticle formation.
Resumo:
Although migration patterns for various life history stages of the chokka squid (Loligo reynaudii) have been previously presented, there has been limited comparison of spatial variation in biological parameters. Based on data from research surveys; size ranges of juveniles, subadults and adults on the Agulhas Bank were estimated and presented spatially. The bulk of the results appear to largely support the current acceptance of the life cycle with an annual pattern of squid hatching in the east, migrating westwards to offshore feeding grounds on the Central and Western Agulhas Bank and the west coast and subsequent return migration to the eastern inshore areas to spawn. The number of adult animals in deeper water, particularly in autumn in the central study area probably represents squid spawning in deeper waters and over a greater area than is currently targeted by the fishery. The distribution of life history stages and different feeding areas does not rule out the possibility that discrete populations of L. reynaudii with different biological characteristics inhabit the western and eastern regions of the Agulhas Bank. In this hypothesis, some mixing of the populations does occur but generally squid from the western Agulhas Bank may occur in smaller numbers, grow more slowly and mature at a larger size. Spawning occurs on the western portion of the Agulhas Bank, and juveniles grow and mature on the west coast and the central Agulhas Bank. Future research requirements include the elucidation of the age structure of chokka squid both spatially and temporally, and a comparison of the statolith chemistry and genetic characterisation between adults from different spawning areas across the Agulhas Bank.
Resumo:
The ribosomal DNA internal transcribed spacer region was amplified and sequenced from a selection of specimens of the Sporobolus smut Ustilago sporoboli-indici. Phylogenetic comparison with other Ustilago and Sporisorium species revealed strong support for an evolutionary radiation of Ustilago species infecting the Chloridoideae and Pooideae, of which U. sporoboli-indici forms a major lineage. Comparisons are made with other groups of plant pathogenic fungi, and it is concluded that phylogenetic analyses of potential biocontrol agents are useful for identifying pathogens that are derived from evolutionary lineages that parasitize a wide range of unrelated plants. Such pathogens are less desirable as biocontrol agents as they may have a greater likelihood of infecting plants outside their normal host ranges.
Resumo:
Biological control of parthenium, a major weed in grazing areas in Australia, was initiated in the mid 1970s. Since then, nine species of insects and two rust fungi have been introduced. Evaluation using pesticide exclusion at two sites (Mt. Panorama and Plain Creek) in Queensland, Australia, revealed that classical biological control had a significant negative effect on the target weed, but the impact varied between years. In this study, I quantified the effects of biological control of parthenium on grass production. Grass production declined with the increase in parthenium biomass. Significant increase in grass production due to biological control was observed, but only in 1 of 4 yr at Mt. Panorama and 2 of 4 yr at Plain Creek. At Mt. Panorama, there was a 40% increase in grass biomass in 1997 because of defoliation by Zygogramma bicolorata and galling by Epiblema strenuana. At Plain Creek, grass biomass increased by 52% in 1998 because of E. strenuana and by 45% in 2000 because of combined effects of E. strenuana and the summer rust Puccinia melampodii. This study provides evidence on the beneficial effects of biological control of parthenium in areas under limited grazing.
Resumo:
Helicoverpa spp. and mirids, Creontiades spp., have been difficult to control biologically in cotton due to their unpredictable temporal abundance combined with a cropping environment often made hostile by frequent usage of broad spectrum insecticides. To address this problem, a range of new generation insecticides registered for use in cotton were tested for compatibility with the assassin bug, Pristhesancus plagipennis (Walker), a potential biological control agent for Helicoverpa spp. and Creontiades spp. Indoxacarb, pyriproxifen, buprofezin, spinosad and fipronil were found to be of low to moderate toxicity on P. plagipennis whilst emamectin benzoate, abamectin, diafenthiuron, imidacloprid and omethaote were moderate to highly toxic. Inundative releases of P. plagipennis integrated with insecticides identified as being of low toxicity were then tested and compared with treatments of P. plagipennis and the compatible insecticides used alone, conventionally sprayed usage practice and an untreated control during two field experiments in cotton. The biological control provided by P. plagipennis nymphs when combined with compatible insecticides provided significant (P<0.001) reductions in Helicoverpa and Creontiades spp. on cotton and provided equivalent yields to conventionally sprayed cotton with half of the synthetic insecticide input. Despite this, the utilization of P. plagipennis in cotton as part of an integrated pest management programme remains unlikely due to high inundative release costs relative to other control technologies such as insecticides and transgenic (Bt) cotton varieties.
Resumo:
Two geometrid moths Chiasmia inconspicua and Chiasmia assimilis, identified as potential biological control agents for prickly acacia Acacia nilotica subsp. indica, were collected in Kenya and imported into quarantine facilities in Australia where laboratory cultures were established. Aspects of the biologies of both insects were studied and CLIMEX® models indicating the climatically favourable areas of Australia were developed. Host range tests were conducted using an approved test list of 74 plant species and no-choice tests of neonate larvae placed on both cut foliage and potted plants. C. inconspicua developed through to adult on prickly acacia and, in small numbers, Acacia pulchella. C. assimilis developed through to adult on prickly acacia and also in very small numbers on A. pulchella, A. deanei, A. decurrens, and A. mearnsii. In all experiments, the response on prickly acacia could be clearly differentiated from the responses on the non-target species. Both insects were approved for release in Australia. Over a three-year period releases were made at multiple sites in north Queensland, almost all in inland areas. There was no evidence of either insect's establishment and both colonies were terminated. A new colony of C. assimilis was subsequently established from insects collected in South Africa and releases of C. assimilis from this new colony were made into coastal and inland infestations of prickly acacia. Establishment was rapid at one coastal site and the insect quickly spread to other infestations. Establishment at one inland area was also confirmed in early 2006. The establishment in coastal areas supported a CLIMEX model that indicated that the climate of coastal areas was more suitable than inland areas.
Resumo:
Climate matching software (CLIMEX) was used to prioritise areas to explore for biological control agents in the native range of cat's claw creeper Macfadyena unguis-cati (Bignoniaceae), and to prioritise areas to release the agents in the introduced ranges of the plant. The native distribution of cat's claw creeper was used to predict the potential range of climatically suitable habitats for cat's claw creeper in its introduced ranges. A Composite Match Index (CMI) of cat's claw creeper was determined with the 'Match Climates' function in order to match the ranges in Australia and South Africa where the plant is introduced with its native range in South and Central America. This information was used to determine which areas might yield climatically-adapted agents. Locations in northern Argentina had CMI values which best matched sites with cat's claw creeper infestations in Australia and South Africa. None of the sites from where three currently prioritised biological control agents for cat's claw creeper were collected had CMI values higher than 0.8. The analysis showed that central and eastern Argentina, south Brazil, Uruguay and parts of Bolivia and Paraguay should be prioritised for exploration for new biological control agents for cat's claw creeper to be used in Australia and South Africa.