109 resultados para Beef industry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project ensures Queensland's involvement in Beef CRC Project 5.4 Accelerated Adoption through Sustainable Beef Profit Partnerships (BPP). The project researches, develops and achieves measurable improvements in business and industry productivity, profit and efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many beef producers within the extensive cattle industry of northern Australia attempt to maintain a constant herd size from year-to-year (fixed stocking), whereas others adjust stock numbers to varying degrees annually in response to changes in forage supply. The effects of these strategies on pasture condition and cattle productivity cannot easily be assessed by grazing trials. Simulation studies, which include feedbacks of changes to pasture condition on cattle liveweight gain, can extend the results of grazing trials both spatially and temporally. They can compare a large number of strategies, over long periods of time, for a range of climate periods, at locations which differ markedly in climate. This simulation study compared the pasture condition and cattle productivity achieved by fixed stocking at the long-term carrying capacity with that of 55 flexible stocking strategies at 28 locations across Queensland and the Northern Territory. Flexible stocking strategies differed markedly in the degree they increased or decreased cattle stocking rates after good and poor pasture growing seasons, respectively. The 28 locations covered the full range in average annual rainfall and inter-annual rainfall variability experienced across northern Australia. Constrained flexibility, which limited increases in stocking rates after good growing seasons to 10% but decreased them by up to 20% after poor growing seasons, provides sustainable productivity gains for cattle producers in northern Australia. This strategy can improve pasture condition and increase cattle productivity relative to fixed stocking at the long-term carrying capacity, and its capacity to do this was greatest in the semiarid rangeland regions that contain the majority of beef cattle in northern Australia. More flexible stocking strategies, which also increased stocking rates after good growing seasons by only half as much as they decreased them after poor growing seasons, were equally sustainable and more productive than constrained flexibility, but are often impractical at property and industry scales. Strategies with the highest limits (e.g. 70%) for both annual increases and decreases in stocking rates could achieve higher cattle productivity, but this was at the expense of pasture condition and was not sustainable. Constrained flexible stocking, with a 10% limit for increases and a 20% limit for decreases in stocking rates annually, is a risk-averse adaptation to high and unpredictable rainfall variability for the extensive beef industry of northern Australia. © Australian Rangeland Society 2016.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Meat and Livestock Australia (MLA) and the Queensland Beef Industry Institute (QBII) used the marketing process Quality Function Deployment (QFD) to determine the education needs of beef producers in northern Australia with regards to beef cattle nutrition management. This is the first time that such a process has been conducted in this sector of the industry. 290 producers from across Queensland, the Northern Territory and Western Australia were interviewed. The results of this process provide considerable insights into issues of concern to northern producers in terms of beef cattle nutrition and how education, extension and research organisations can ensure that they meet the needs of their target audience. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Davis Growth Model (a dynamic steer growth model encompassing 4 fat deposition models) is currently being used by the phenotypic prediction program of the Cooperative Research Centre (CRC) for Beef Genetic Technologies to predict P8 fat (mm) in beef cattle to assist beef producers meet market specifications. The concepts of cellular hyperplasia and hypertrophy are integral components of the Davis Growth Model. The net synthesis of total body fat (kg) is calculated from the net energy available after accounting tor energy needs for maintenance and protein synthesis. Total body fat (kg) is then partitioned into 4 fat depots (intermuscular, intramuscular, subcutaneous, and visceral). This paper reports on the parameter estimation and sensitivity analysis of the DNA (deoxyribonucleic acid) logistic growth equations and the fat deposition first-order differential equations in the Davis Growth Model using acslXtreme (Hunstville, AL, USA, Xcellon). The DNA and fat deposition parameter coefficients were found to be important determinants of model function; the DNA parameter coefficients with days on feed >100 days and the fat deposition parameter coefficients for all days on feed. The generalized NL2SOL optimization algorithm had the fastest processing time and the minimum number of objective function evaluations when estimating the 4 fat deposition parameter coefficients with 2 observed values (initial and final fat). The subcutaneous fat parameter coefficient did indicate a metabolic difference for frame sizes. The results look promising and the prototype Davis Growth Model has the potential to assist the beef industry meet market specifications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A review of factors that may impact on the capacity of beef cattle females, grazing semi-extensive to extensive pastures in northern Australia, to conceive, maintain a pregnancy and wean a calf was conducted. Pregnancy and weaning rates have generally been used to measure the reproductive performance of herds. However, this review recognises that reproductive efficiency and the general measures associated with it more effectively describe the economic performance of beef cattle enterprises. More specifically, reproductive efficiency is influenced by (1) pregnancy rate which is influenced by (i) age at puberty; (ii) duration of post-partum anoestrus; (iii) fertilisation failure and (iv) embryo survival; while (2) weight by number of calves per breeding female retained for mating is influenced by (i) cow survival; (ii) foetal survival; and (iii) calf survival; and (3) overall lifetime calf weight weaned per mating. These measures of reproductive efficiency are discussed in depth. Further, a range of infectious and non-infectious factors, namely, environmental, physiological, breed and genetic factors and their impact on these stages of the reproductive cycle are investigated and implications for the northern Australian beef industry are discussed. Finally, conclusions and recommendations to minimise reproductive inefficiencies based on current knowledge are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Northern Beef Scoping Study. To investigate alternate pathways for the northern Australia beef industry on a regional basis and assess their contribution to increased productivity and maintain condition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Rangeland Journal – Climate Clever Beef special issue examines options for the beef industry in northern Australia to contribute to the reduction in global greenhouse gas (GHG) emissions and to engage in the carbon economy. Relative to its gross value (A$5 billion), the northern beef industry is responsible for a sizable proportion of national reportable GHG emissions (8–10%) through enteric methane, savanna burning, vegetation clearing and land degradation. The industry occupies large areas of land and has the potential to impact the carbon cycle by sequestering carbon or reducing carbon loss. Furthermore, much of the industry is currently not achieving its productivity potential, which suggests that there are opportunities to improve the emissions intensity of beef production. Improving the industry’s GHG emissions performance is important for its environmental reputation and may benefit individual businesses through improved production efficiency and revenue from the carbon economy. The Climate Clever Beef initiative collaborated with beef businesses in six regions across northern Australia to better understand the links between GHG emissions and carbon stocks, land condition, herd productivity and profitability. The current performance of businesses was measured and alternate management options were identified and evaluated. Opportunities to participate in the carbon economy through the Australian Government’s Emissions Reduction Fund (ERF) were also assessed. The initiative achieved significant producer engagement and collaboration resulting in practice change by 78 people from 35 businesses, managing more than 1 272 000 ha and 132 000 cattle. Carbon farming opportunities were identified that could improve both business performance and emissions intensity. However, these opportunities were not without significant risks, trade-offs and limitations particularly in relation to business scale, and uncertainty in carbon price and the response of soil and vegetation carbon sequestration to management. This paper discusses opportunities for reducing emissions, improving emission intensity and carbon sequestration, and outlines the approach taken to achieve beef business engagement and practice change. The paper concludes with some considerations for policy makers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Approximately 5% of Australian national greenhouse gas (GHG) emissions are derived from the northern beef industry. Improving the reproductive performance of cows has been identified as a key target for increasing profitability, and this higher efficiency is also likely to reduce the GHG emissions intensity of beef production. The effects of strategies to increase the fertility of breeding herds and earlier joining of heifers as yearlings were studied on two properties at Longreach and Boulia in western Queensland. The beef production, GHG emissions, emissions intensity and profitability were investigated and compared with typical management in the two regions. Overall weaning rates achieved on the two properties were 79% and 74% compared with typical herd weaning rates of 58% in both regions. Herds with high reproductive performance had GHG emissions intensities (t CO2-e t–1 liveweight sold) 28% and 22% lower than the typical herds at Longreach and Boulia, with most of the benefit from higher weaning rates. Farm gross margin analysis showed that it was more profitable, by $62 000 at Longreach and $38 000 at Boulia, to utilise higher reproductive performance to increase the amount of liveweight sold with the same number of adult equivalents compared with reducing the number of adult equivalents to maintain the same level of liveweight sold and claiming a carbon credit for lower farm emissions. These gains achieved at two case study properties which had different rainfall, country types, and property sizes suggest similar improvements can be made on-farm across the Mitchell Grass Downs bioregion of northern Australia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies of greenhouse gas emissions (GHGE) from beef production systems in northern Australia have been based on models of ‘steady-state’ herd structures that do not take into account the considerable inter-annual variation in liveweight gain, reproduction and mortality rates that occurs due to seasonal conditions. Nor do they consider the implications of flexible stocking strategies designed to adapt these production systems to the highly variable climate. The aim of the present study was to quantify the variation in total GHGE (t CO2e) and GHGE intensity (t CO2e/t liveweight sold) for the beef industry in northern Australia when variability in these factors was considered. A combined GRASP–Enterprise modelling platform was used to simulate a breeding–finishing beef cattle property in the Burdekin River region of northern Queensland, using historical climate data from 1982–2011. GHGE was calculated using the method of Australian National Greenhouse Gas Inventory. Five different stocking-rate strategies were simulated with fixed stocking strategies at moderate and high rates, and three flexible stocking strategies where the stocking rate was adjusted annually by up to 5%, 10% or 20%, according to pasture available at the end of the growing season. Variation in total annual GHGE was lowest in the ‘fixed moderate’ (~9.5 ha/adult equivalent (AE)) stocking strategy, ranging from 3799 to 4471 t CO2e, and highest in the ‘fixed high’ strategy (~5.9 ha/AE), which ranged from 3771 to 7636 t CO2e. The ‘fixed moderate’ strategy had the least variation in GHGE intensity (15.7–19.4 t CO2e/t liveweight sold), while the ‘flexible 20’ strategy (up to 20% annual change in AE) had the largest range (10.5–40.8 t CO2e/t liveweight sold). Across the five stocking strategies, the ‘fixed moderate’ stocking-rate strategy had the highest simulated perennial grass percentage and pasture growth, highest average rate of liveweight gain (121 kg/steer), highest average branding percentage (74%) and lowest average breeding-cow mortality rate (3.9%), resulting in the lowest average GHGE intensity (16.9 t CO2e/t liveweight sold). The ‘fixed high’ stocking rate strategy (~5.9 ha/AE) performed the poorest in each of these measures, while the three flexible stocking strategies were intermediate. The ‘fixed moderate’ stocking strategy also yielded the highest average gross margin per AE carried and per hectare. These results highlight the importance of considering the influence of climate variability on stocking-rate management strategies and herd performance when estimating GHGE. The results also support a body of previous work that has recommended the adoption of moderate stocking strategies to enhance the profitability and ecological stability of beef production systems in northern Australia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper explores the effect of using regional data for livestock attributes on estimation of greenhouse gas (GHG) emissions for the northern beef industry in Australia, compared with using state/territory-wide values, as currently used in Australia’s national GHG inventory report. Regional GHG emissions associated with beef production are reported for 21 defined agricultural statistical regions within state/territory jurisdictions. A management scenario for reduced emissions that could qualify as an Emissions Reduction Fund (ERF) project was used to illustrate the effect of regional level model parameters on estimated abatement levels. Using regional parameters, instead of state level parameters, for liveweight (LW), LW gain and proportion of cows lactating and an expanded number of livestock classes, gives a 5.2% reduction in estimated emissions (range +12% to –34% across regions). Estimated GHG emissions intensity (emissions per kilogram of LW sold) varied across the regions by up to 2.5-fold, ranging from 10.5 kg CO2-e kg–1 LW sold for Darling Downs, Queensland, through to 25.8 kg CO2-e kg–1 LW sold for the Pindan and North Kimberley, Western Australia. This range was driven by differences in production efficiency, reproduction rate, growth rate and survival. This suggests that some regions in northern Australia are likely to have substantial opportunities for GHG abatement and higher livestock income. However, this must be coupled with the availability of management activities that can be implemented to improve production efficiency; wet season phosphorus (P) supplementation being one such practice. An ERF case study comparison showed that P supplementation of a typical-sized herd produced an estimated reduction of 622 t CO2-e year–1, or 7%, compared with a non-P supplemented herd. However, the different model parameters used by the National Inventory Report and ERF project means that there was an anomaly between the herd emissions for project cattle excised from the national accounts (13 479 t CO2-e year–1) and the baseline herd emissions estimated for the ERF project (8 896 t CO2-e year–1) before P supplementation was implemented. Regionalising livestock model parameters in both ERF projects and the national accounts offers the attraction of being able to more easily and accurately reflect emissions savings from this type of emissions reduction project in Australia’s national GHG accounts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The farm-gate value of extensive beef production from the northern Gulf region of Queensland, Australia, is ~$150 million annually. Poor profitability and declining equity are common issues for most beef businesses in the region. The beef industry relies primarily on native pasture systems and studies continue to report a decline in the condition and productivity of important land types in the region. Governments and Natural Resource Management groups are investing significant resources to restore landscape health and productivity. Fundamental community expectations also include broader environmental outcomes such as reducing beef industry greenhouse gas emissions. Whole-of-business analysis results are presented from 18 extensive beef businesses (producers) to highlight the complex social and economic drivers of management decisions that impact on the natural resource and environment. Business analysis activities also focussed on improving enterprise performance. Profitability, herd performance and greenhouse emission benchmarks are documented and discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The north Australian beef industry is complex and dynamic. It is strategically positioned to access new and existing export markets. To prosper in a global economy, it will require strong processing and live cattle sectors, continued rationalisation of infrastructure, uptake of appropriate technology, and the synergy obtained when industry sectors unite and cooperate to maintain market advantage. Strategies to address food safety, animal welfare, the environment and other consumer concerns must be delivered. Strategic alliances with quality assurance systems will develop. These alliances will be based on economies of scale and on vertical cooperation, rather than vertical integration. Industry sectors will need to increase their contribution to Research, Development and Extension. These contributions need to be global in outlook. Industry sectors should also be aware that change (positive or negative) in one sector will impact on other sectors. Feedback along the food chain is essential to maximise productivity and market share.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Burdekin Rangelands is a diverse area of semi-arid eucalypt and acacia savannah covering six million hectares in north eastern Australia. The major land use is cattle grazing on 220 commercial cattle properties (average size 26,000 ha) each carrying on average 2600 adult equivalents. Production was the focus of the beef industry and support agencies prior to the mid 1980's. Widespread land degradation during the 1980's led to a grassroots realisation that environmental impacts, including water quality had to be addressed for the beef industry to attain sustainability. The formation of a series of producer based landcare gropus and the support of several Queensland and Australian government research and extension agencies led to a greater awareness and adoption of sound grazing land management practices (Shepherd 2005).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The project renewed the Breedcow and Dynama software making it compatible with modern computer operating systems and platforms. Enhancements were also made to the linkages between the individual programs and their operation. The suite of programs is a critical component of the skill set required to make soundly based plans and production choices in the north Australian beef industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project will refine the Savanna Plan program to better promote sustainable grazing practices across the northern rangelands, further engage the beef industry and investigate and develop Savanna Plan's potential to provide practical tools for carbon sequestration on pastoral properties across northern Australia.