3 resultados para workshops (work spaces)

em Universidade Complutense de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We work with Besov spaces Bp,q0,b defined by means of differences, with zero classical smoothness and logarithmic smoothness with exponent b. We characterize Bp,q0,b by means of Fourier-analytical decompositions, wavelets and semi-groups. We also compare those results with the well-known characterizations for classical Besov spaces Bp,qs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we prove the real Nullstellensatz for the ring O(X) of analytic functions on a C-analytic set X ⊂ Rn in terms of the saturation of Łojasiewicz’s radical in O(X): The ideal I(Ƶ(a)) of the zero-set Ƶ(a) of an ideal a of O(X) coincides with the saturation (Formula presented) of Łojasiewicz’s radical (Formula presented). If Ƶ(a) has ‘good properties’ concerning Hilbert’s 17th Problem, then I(Ƶ(a)) = (Formula presented) where (Formula presented) stands for the real radical of a. The same holds if we replace (Formula presented) with the real-analytic radical (Formula presented) of a, which is a natural generalization of the real radical ideal in the C-analytic setting. We revisit the classical results concerning (Hilbert’s) Nullstellensatz in the framework of (complex) Stein spaces. Let a be a saturated ideal of O(Rn) and YRn the germ of the support of the coherent sheaf that extends aORn to a suitable complex open neighborhood of Rn. We study the relationship between a normal primary decomposition of a and the decomposition of YRn as the union of its irreducible components. If a:= p is prime, then I(Ƶ(p)) = p if and only if the (complex) dimension of YRn coincides with the (real) dimension of Ƶ(p).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first part of this work, we show how certain techniques from quantum information theory can be used in order to obtain very sharp embeddings between noncommutative Lp-spaces. Then, we use these estimates to study the classical capacity with restricted assisted entanglement of the quantum erasure channel and the quantum depolarizing channel. In particular, we exactly compute the capacity of the first one and we show that certain nonmultiplicative results hold for the second one.