2 resultados para transfer matrix method

em Universidade Complutense de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the electron dynamics and transport properties of one-dimensional continuous models with random, short-range correlated impurities. We develop a generalized Poincare map formalism to cast the Schrodinger equation for any potential into a discrete set of equations, illustrating its application by means of a specific example. We then concentrate on the case of a Kronig-Penney model with dimer impurities. The previous technique allows us to show that this model presents infinitely many resonances (zeroes of the reflection coefficient at a single dimer) that give rise to a band of extended states, in contradiction with the general viewpoint that all one-dimensional models with random potentials support only localized states. We report on exact transfer-matrix numerical calculations of the transmission coefFicient, density of states, and localization length for various strengths of disorder. The most important conclusion so obtained is that this kind of system has a very large number of extended states. Multifractal analysis of very long systems clearly demonstrates the extended character of such states in the thermodynamic limit. In closing, we brieBy discuss the relevance of these results in several physical contexts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fresnel lenses and other faceted or micro-optic devices are increasingly used in multiple applications like solar light concentrators and illumination devices, just to name some representative. However, it seems to be a certain lack of adequate techniques for the assessment of the performance of final fabricated devices. As applications are more exigent this characterization is a must. We provide a technique to characterize the performance of Fresnel lenses, as light collection devices. The basis for the method is a configuration where a camera images the Fresnel lens aperture. The entrance pupil of the camera is situated at the focal spot or the conjugate of a simulated solar source. In this manner, detailed maps of the performance of different Fresnel lenses are obtained for different acceptance angles.