12 resultados para striated activator of Rho signalling (STARS)
em Universidade Complutense de Madrid
Resumo:
We present the most recent results of our ongoing long-term high resolution spectroscopic study of nearby (d ≤ 25 pc) FGK stars which aim is to characterize the local properties of the Galaxy, in particular the star-formation history. A through analysis has been carried out for 253 cool stars in the solar neighborhood. This includes radial and rotational velocities determinations, chromospheric activity levels inference, kinematic analysis, and age estimates. This study does not only shed new light on the issue of stellar formation history but also contributes to any present or future mission aiming to detect extra-solar planets. Exo-planets are likely to be found orbiting around nearby cool stars and their detection and characterization is highly dependent on the precise determination of fundamental stellar parameters such as age, activity levels. Therefore, our study is of paramount importance to ensure the success of any such mission.
Resumo:
As part of a long term effort to understand pre-main sequence Li burning, we have obtained high resolution spectroscopic observations of 14 late type stars (G0-M1) in the young open cluster IC 4665. Most of the stars have Hα filled-in and Li I absorption, as expected for their young age. From the equivalent widths of Hα emission excess (obtained using the spectral subtraction technique) and the the Li i λ6708 feature, we have derived Hα emission fluxes and photospheric Li abundances. The mean Li abundance of IC 4665 solar-type stars is log N(Li) = 3.1; the same as in other young clusters (α Per, Pleiades) and T Tauri stars. Our results support the conclusions from previous works that PMS Li depletion is very small for masses ∼ 1 M_⨀ . Among the IC 4665 late-G and early K-type stars, there is a spread in Li abundances of about one order of magnitude. The Li-poor IC 4665 members have low Hα excess and vsini≤10. Hence, the Li-activity-rotation connection which has been clearly established in the Pleiades also seems to hold in IC 4665. One M-type IC 4665 star that we have observed does not show Li, implying a very efficient Li depletion as observed in α Per stars of the same spectral type. The level of chromospheric activity and Li depletion among the low-mass stars of IC 4665 is similar to that in the Pleiades. In fact, we note that the Li abundance distributions in several young clusters (α Per, Pleiades, IC 2391, IC 4665) and in post T Tauri stars are strikingly similar. This result suggests that Hα emission and Li abundance not well correlated with age for low-mass stars between 20 and 100 Myr old. We argue that a finer age indicator, the ''LL-clock'', would be the luminosity at which the transition between efficient Li depletion and preservation takes place for fully convective objects. The LL-clock could allow in the near future to derive the relative ages of young open clusters, and clarify the study of PMS evolution of cool stars.
Resumo:
Stellar kinematic groups are kinematical coherent groups of stars that might have a common origin. These groups are dispersed throughout the Galaxy over time by the tidal effects of both Galactic rotation and disc heating, although their chemical content remains unchanged. The aim of chemical tagging is to establish that the abundances of every element in the analysis are homogeneus among the members. We study the case of the Hyades Supercluster to compile a reliable list of members (FGK stars) based on our chemical tagging analysis. For a total of 61 stars from the Hyades Supercluster, stellar atmospheric parameters (T_eff, log g, ξ, and [Fe/H]) are determined using our code called StePar, which is based on the sensitivity to the stellar atmospheric parameters of the iron EWs measured in the spectra. We derive the chemical abundances of 20 elements and find that their [X/Fe] ratios are consistent with Galactic abundance trends reported in previous studies. The chemical tagging method is applied with a carefully developed differential abundance analysis of each candidate member of the Hyades Supercluster, using a well-known member of the Hyades cluster as a reference (vB 153). We find that only 28 stars (26 dwarfs and 2 giants) are members, i.e. that 46% of our candidates are members based on the differential abundance analysis. This result confirms that the Hyades Supercluster cannot originate solely from the Hyades cluster.
Resumo:
Context. Nearby late-type stars are excellent targets for seeking young objects in stellar associations and moving groups. The origin of these structures is still misunderstood, and lists of moving group members often change with time and also from author to author. Most members of these groups have been identified by means of kinematic criteria, leading to an important contamination of previous lists by old field stars. Aims. We attempt to identify unambiguous moving group members among a sample of nearby-late type stars by studying their kinematics, lithium abundance, chromospheric activity, and other age-related properties. Methods. High-resolution echelle spectra (R ~ 57 000) of a sample of nearby late-type stars are used to derive accurate radial velocities that are combined with the precise Hipparcos parallaxes and proper motions to compute galactic-spatial velocity components. Stars are classified as possible members of the classical moving groups according to their kinematics. The spectra are also used to study several age-related properties for young late-type stars, i.e., the equivalent width of the lithium Li i 6707.8 Å line or the R'_HK index. Additional information like X-ray fluxes from the ROSAT All-Sky Survey or the presence of debris discs is also taken into account. The different age estimators are compared and the moving group membership of the kinematically selected candidates are discussed. Results. From a total list of 405 nearby stars, 102 have been classified as moving group candidates according to their kinematics. i.e., only ~25.2% of the sample. The number reduces when age estimates are considered, and only 26 moving group candidates (25.5% of the 102 candidates) have ages in agreement with the star having the same age as an MG member.
Resumo:
Context. During the course of a large spectroscopic survey of X-ray active late-type stars in the solar neighbourhood, we discovered four lithium-rich stars packed within just a few degrees on the sky. Although located in a sky area rich in CO molecular regions and dark clouds, the Cepheus-Cassiopeia complex, these very young stars are projected several degrees away from clouds in front of an area void of interstellar matter. As such, they are very good "isolated" T Tauri star candidates. Aims. We present optical observations of these stars conducted with 1-2 m class telescopes. We acquired high-resolution optical spectra as well as photometric data allowing us to investigate in detail their nature and physical parameters with the aim of testing the "runaway" and "in-situ" formation scenarios. Their kinematical properties are also analyzed to investigate their possible connection to already known stellar kinematic groups. Methods. We use the cross-correlation technique and other tools developed by us to derive accurate radial and rotational velocities and perform an automatic spectral classification. The spectral subtraction technique is used to infer chromospheric activity level in the Hα line core and clean the spectra of photospheric lines before measuring the equivalent width of the lithium absorption line. Results. Both physical (lithium content, chromospheric, and coronal activities) and kinematical indicators show that all stars are very young, with ages probably in the range 10-30 Myr. In particular, the spectral energy distribution of TYC4496-780-1 displays a strong near-and far-infrared excess, typical of T Tauri stars still surrounded by an accretion disc. They also share the same Galactic motion, proving that they form a homogeneous moving group of stars with the same origin. Conclusions. The most plausible explanation of how these "isolated" T Tauri stars formed is the "in-situ" model, although accurate distances are needed to clarify their connection with the Cepheus-Cassiopeia complex. The discovery of this loose association of "isolated" T Tauri stars can help to shed light on atypical formation processes of stars and planets in low-mass clouds.
Resumo:
Context. The associations and moving groups of young stars are excellent laboratories for investigating stellar formation in the solar neighborhood. Previous results have confirmed that a non-negligible fraction of old main-sequence stars is present in the lists of possible members of young stellar kinematic groups. A detailed study of the properties of these samples is needed to separate the young stars from old main-sequence stars with similar space motion, and identify the origin of these structures. Aims. Our intention is to characterize members of the young moving groups, determine their age distribution, and quantify the contamination by old main-sequence stars, in particular, for the Local Association. Methods. We used stars possible members of the young (~10-650 Myr) moving groups from the literature. To determine the age of the stars, we used several suitable age indicators for young main sequence stars, i.e., X-ray fluxes from the Rosat All-sky Survey database, photometric data from the Tycho-2, Hipparcos, and 2MASS database. We also used spectroscopic data, in particular the equivalent width of the lithium line Li I λ6707.8 Å and H_α, to constrain the range of ages of the stars. Results. By combining photometric and spectroscopic data, we were able to separate the young stars (10-650 Myr) from the old (> 1 Gyr) field ones. We found, in particular, that the Local Association is contaminated by old field stars at the level of ~30%. This value must be considered as the contamination for our particular sample, and not of the entire Local Association. For other young moving groups, it is more difficult to estimate the fraction of old stars among possible members. However, the level of X-ray emission can, at least, help to separate two age populations: stars with <200 Myr and stars older than this. Conclusions. Among the candidate members of the classical moving groups, there is a non-negligible fraction of old field stars that should be taken into account when studying the stellar birthrate in the solar neighborhood. Our results are consistent with a scenario in which the moving groups contain both groups of young stars formed in a recent star-formation episode and old field stars with similar space motion. Only by combining X-ray and optical spectroscopic data is it possible to distinguish between these two age populations.
Resumo:
Post T Tauri stars (PTTS) are late-type stars in the age range between 10 and 100 Myr filling the gap between T Tauri (TTs) and zero-age: main sequence phases. This period of evolution remains ambiguous and until now different studies of young stars have failed to find the numbers of PTTS that are expected. In the last years, some PTTS have been identified among the X-ray detected pre-main sequence stars in some star-forming regions. More recently, additional PTTS have been identified in young associations and moving groups (β Pic, TW Hya, Tucana/Horologium, and the AB Dor). However, many isolated PTTS still remain undiscovered. In this contribution, we compiled the PTTS previously identified in the literature, and identified new candidates using the information provided by the high resolution spectra obtained during our surveys of late-type stars possible members to young moving groups, FGK stars in the solar neighborhood, and RasTyc sample. To identify PTTS we applied an age-oriented definition using relative age indicators (Li abundance, chromospheric and coronal emission and the kinematics) as well as color-magnitude diagrams and pre-main sequence isochrones.
Resumo:
We present a library of Penn State Fiber Optic Echelle (FOE) observations of a sample of field stars with spectral types F to M and luminosity classes V to I. The spectral coverage is from 3800 to 10000 Å with a nominal resolving power of 12,000. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity such as the Balmer lines (Hα to H epsilon), Ca II H & K, the Mg I b triplet, Na I D_1, D_2, He I D_3, and Ca II IRT lines. There are also a large number of photospheric lines, which can also be affected by chromospheric activity, and temperature-sensitive photospheric features such as TiO bands. The spectra have been compiled with the goal of providing a set of standards observed at medium resolution. We have extensively used such data for the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways ranging from radial velocity templates to study of variable stars and stellar population synthesis. This library can also be used for spectral classification purposes and determination of atmospheric parameters (T_eff, log g, [Fe/H]). A digital version of all the fully reduced spectra is available via ftp and the World Wide Web (WWW) in FITS format.
Resumo:
Context. Although many studies have been performed so far, there are still dozens of low-mass stars and brown dwarfs in the young σ Orionis open cluster without detailed spectroscopic characterisation. Aims. We look for unknown strong accretors and disc hosts that were undetected in previous surveys. Methods. We collected low-resolution spectroscopy (R ~ 700) of ten low-mass stars and brown dwarfs in σ Orionis with OSIRIS at the Gran Telescopio Canarias under very poor weather conditions. These objects display variability in the optical, infrared, Hα, and/or X-rays on time scales of hours to years. We complemented our spectra with optical and near-/mid-infrared photometry. Results. For seven targets, we detected lithium in absorption, identified Hα, the calcium doublet, and forbidden lines in emission, and/or determined spectral types for the first time. We characterise in detail a faint, T Tauri-like brown dwarf with an 18 h-period variability in the optical and a large Hα equivalent width of –125 ± 15 Å, as well as two M1-type, X-ray-flaring, low-mass stars, one with a warm disc and forbidden emission lines, the other with a previously unknown cold disc with a large inner hole. Conclusions. New unrevealed strong accretors and disc hosts, even below the substellar limit, await discovery among the list of known σ Orionis stars and brown dwarfs that are variable in the optical and have no detailed spectroscopic characterisation yet.
Resumo:
Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their counterparts in the solar system are the asteroid and Edgeworth-Kuiper belts. Aims. The aim of this paper is to provide robust numbers for the incidence of debris discs around FGK stars in the solar neighbourhood. Methods. The full sample of 177 FGK stars with d ≤ 20 pc proposed for the DUst around NEarby Stars (DUNES) survey is presented. Herschel/PACS observations at 100 and 160 μm were obtained, and were complemented in some cases with data at 70 μm and at 250, 350, and 500 μm SPIRE photometry. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the Disc Emission via a Bias-free Reconnaissance in IR and Sub-mm (DEBRIS) consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analysed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. Results. The subsample of 105 stars with d ≤ 15 pc containing 23 F, 33 G, and 49 K stars is complete for F stars, almost complete for G stars, and contains a substantial number of K stars from which we draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type are 0.26^+0.21_-0.14 (6 objects with excesses out of 23 F stars), 0.21^+0.17_-0.11 (7 out of 33 G stars), and 0.20^+0.14_-0.09 (10 out of 49 K stars); the fraction for all three spectral types together is 0.22^+0.08_-0.07 (23 out of 105 stars). The uncertainties correspond to a 95% confidence level. The medians of the upper limits of L_dust/L_∗ for each spectral type are 7.8 × 10^-7 (F), 1.4 × 10^-6 (G), and 2.2 × 10^-6 (K); the lowest values are around 4.0 × 10^-7. The incidence of debris discs is similar for active (young) and inactive (old) stars. The fractional luminosity tends to drop with increasing age, as expected from collisional erosion of the debris belts.
Resumo:
Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 μm were obtained, complemented in some cases with observations at 70 μm, and at 250, 350 and 500 μm using SPIRE. The observing strategy was to integrate as deep as possible at 100 μm to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of ~12.1% ± 5% before Herschel to ~20.2% ± 2%. A significant fraction (~52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70–160 μm range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
Resumo:
We present Herschel PACS 100 and 160 μm observations of the solar-type stars α Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel open time key programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 μm for all three stars. HD 210277 also shows a small excess at 100 μm, while the 100 μm fluxes of α Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. Both α Men and HD 88230 are spatially resolved in the PACS 160 μm images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ~115 to ≤ 250 AU. The estimated black body temperatures from the 100 and 160 μm fluxes are ≲22 K, and the fractional luminosity of the cold dust is L_dust/L_⋆ ~ 10^-6, close to the luminosity of the solar-system’s Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars, so they cannot be explained easily invoking “classical” debris disc models.