4 resultados para stochastic numerical methods
em Universidade Complutense de Madrid
Resumo:
It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero-and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent a of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.
Resumo:
In maritime transportation, decisions are made in a dynamic setting where many aspects of the future are uncertain. However, most academic literature on maritime transportation considers static and deterministic routing and scheduling problems. This work addresses a gap in the literature on dynamic and stochastic maritime routing and scheduling problems, by focusing on the scheduling of departure times. Five simple strategies for setting departure times are considered, as well as a more advanced strategy which involves solving a mixed integer mathematical programming problem. The latter strategy is significantly better than the other methods, while adding only a small computational effort.
Resumo:
Heuristics for stochastic and dynamic vehicle routing problems are often kept relatively simple, in part due to the high computational burden resulting from having to consider stochastic information in some form. In this work, three existing heuristics are extended by three different local search variations: a first improvement descent using stochastic information, a tabu search using stochastic information when updating the incumbent solution, and a tabu search using stochastic information when selecting moves based on a list of moves determined through a proxy evaluation. In particular, the three local search variations are designed to utilize stochastic information in the form of sampled scenarios. The results indicate that adding local search using stochastic information to the existing heuristics can further reduce operating costs for shipping companies by 0.5–2 %. While the existing heuristics could produce structurally different solutions even when using similar stochastic information in the search, the appended local search methods seem able to make the final solutions more similar in structure.
Resumo:
This paper deals with a stochastic epidemic model for computer viruses with latent and quarantine periods, and two sources of infection: internal and external. All sojourn times are considered random variables which are assumed to be independent and exponentially distributed. For this model extinction and hazard times are analyzed, giving results for their Laplace transforms and moments. The transient behavior is considered by studying the number of times that computers are susceptible, exposed, infectious and quarantined during a period of time (0, t] and results for their joint and marginal distributions, moments and cross moments are presented. In order to give light this analysis, some numerical examples are showed.