2 resultados para standard package software
em Universidade Complutense de Madrid
Resumo:
Context. In February-March 2014, the MAGIC telescopes observed the high-frequency peaked BL Lac 1ES 1011+496 (z=0.212) in flaring state at very-high energy (VHE, E>100GeV). The flux reached a level more than 10 times higher than any previously recorded flaring state of the source. Aims. Description of the characteristics of the flare presenting the light curve and the spectral parameters of the night-wise spectra and the average spectrum of the whole period. From these data we aim at detecting the imprint of the Extragalactic Background Light (EBL) in the VHE spectrum of the source, in order to constrain its intensity in the optical band. Methods. We analyzed the gamma-ray data from the MAGIC telescopes using the standard MAGIC software for the production of the light curve and the spectra. For the constraining of the EBL we implement the method developed by the H.E.S.S. collaboration in which the intrinsic energy spectrum of the source is modeled with a simple function (< 4 parameters), and the EBL-induced optical depth is calculated using a template EBL model. The likelihood of the observed spectrum is then maximized, including a normalization factor for the EBL opacity among the free parameters. Results. The collected data allowed us to describe the flux changes night by night and also to produce di_erential energy spectra for all nights of the observed period. The estimated intrinsic spectra of all the nights could be fitted by power-law functions. Evaluating the changes in the fit parameters we conclude that the spectral shape for most of the nights were compatible, regardless of the flux level, which enabled us to produce an average spectrum from which the EBL imprint could be constrained. The likelihood ratio test shows that the model with an EBL density 1:07 (-0.20,+0.24)stat+sys, relative to the one in the tested EBL template (Domínguez et al. 2011), is preferred at the 4:6 σ level to the no-EBL hypothesis, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola. This would translate into a constraint of the EBL density in the wavelength range [0.24 μm,4.25 μm], with a peak value at 1.4 μm of λF_ = 12:27^(+2:75)_ (-2:29) nW m^(-2) sr^(-1), including systematics.
Resumo:
In the last decades accumulated clinical evidence has proven that intra-operative radiation therapy (IORT) is a very valuable technique. In spite of that, planning technology has not evolved since its conception, being outdated in comparison to current state of the art in other radiotherapy techniques and therefore slowing down the adoption of IORT. RADIANCE is an IORT planning system, CE and FDA certified, developed by a consortium of companies, hospitals and universities to overcome such technological backwardness. RADIANCE provides all basic radiotherapy planning tools which are specifically adapted to IORT. These include, but are not limited to image visualization, contouring, dose calculation algorithms-Pencil Beam (PB) and Monte Carlo (MC), DVH calculation and reporting. Other new tools, such as surgical simulation tools have been developed to deal with specific conditions of the technique. Planning with preoperative images (preplanning) has been evaluated and the validity of the system being proven in terms of documentation, treatment preparation, learning as well as improvement of surgeons/radiation oncologists (ROs) communication process. Preliminary studies on Navigation systems envisage benefits on how the specialist to accurately/safely apply the pre-plan into the treatment, updating the plan as needed. Improvements on the usability of this kind of systems and workflow are needed to make them more practical. Preliminary studies on Intraoperative imaging could provide an improved anatomy for the dose computation, comparing it with the previous pre-plan, although not all devices in the market provide good characteristics to do so. DICOM.RT standard, for radiotherapy information exchange, has been updated to cover IORT particularities and enabling the possibility of dose summation with external radiotherapy. The effect of this planning technology on the global risk of the IORT technique has been assessed and documented as part of a failure mode and effect analysis (FMEA). Having these technological innovations and their clinical evaluation (including risk analysis) we consider that RADIANCE is a very valuable tool to the specialist covering the demands from professional societies (AAPM, ICRU, EURATOM) for current radiotherapy procedures.