2 resultados para social network data
em Universidade Complutense de Madrid
Resumo:
The focus of this paper is the assessment of groups of agents or units in a network organization. Given a social network, the relations between agents are modeled by means of a graph, and its functionality will be codified by means of a cooperative game. Building on previous work of Gomez et al. (2003) for the individual case, we propose a Myerson group value to evaluate the ability of each group of agents inside the social network to achieve the organization's goals. We analyze this centrality measure, and in particular we offer several decompositions that facilitate obtaining a precise interpretation of it.
Resumo:
Esta Tesis tiene dos partes. La Primera Parte es Teórica y Metodológica y trata de la actual crisis de paradigma en las Ciencias Sociales, y de cómo se puede remontar con la Teoría del Pensamiento Complejo, siempre que sus propuestas se centren en modelos empíricos de Análisis de Redes Sociales debidamente matematizados y estadísticamente refrendados. La propuesta del tesista propone enriquecer el actual homo economicus, incorporando la importancia de las relaciones con el grupo (coactivas, coercitivas o motivacionales), a través de un nuevo objeto de estudio: los Proyectos. Es mediante los Proyectos, donde los individuos y los grupos en los que interactúan, transan y organizan sus esfuerzos. El problema reside en que, no existe hasta la fecha, una sistematización y modelización de los Proyectos como objeto de estudio en las Ciencias Sociales. Sin embargo, hay una amplia experiencia de análisis y sistematización de Proyectos tanto en la Economía de la Empresa (Management, Business Administration), como en la Economía Pública. En esta Tesis se estudia todo lo publicado recientemente sobre los Proyectos de Inversión Pública (PIPs) y su eficiencia en Latinoamérica. En la Segunda Parte, centrada en un Trabajo Empírico y su modelización, el tesista crea una Base de Datos (BdD) primaria, a partir del Banco de Proyectos (BdP) del Ministerio de Economía y Finanzas (MEF) del Perú (2001-2014), que recoge todos los Proyectos de Inversión Pública (PIP), cerca de 400.000 PIPs Iniciales, los tabula en 48 categorías y posteriormente, “deja hablar a los datos” jugando a relacionar, correlacionar, inducir hipótesis y verificarlas mediante un sistema que se centra en la operativa tipo “Big Data”. A esto le denomina “triangular” porque mezcla en el esfuerzo, herramientas de Estadística Descriptiva, Estadística Inferencial y Econometría para poder refrendar el conocimiento inducido, que siempre en ciencia, es una mera certeza probabilística. El tesista concluye que en el caso del Sistema Nacional de Inversión Pública del Perú (SNIP) y más específicamente, de los procesos administrativos que emplea -denominados “Ciclo PIP”-, queda claro que se está trabajando con “fenómenos emergentes” cuyo comportamiento no se adapta a una Distribución Normal. Y que dicho comportamiento errático se debe a que la Inversión Pública es cíclica (Ecuación Evolutiva de Price) y a que el “Ciclo PIP” opera a todo nivel (GN, GR, GL) en función de las relaciones entre los miembros que componen su red. Ergo, es un tema a Analizar con Social Network Analysis (Análisis Social de Redes, ARS). El tesista concluye que las redes de “Ciclo PIP” en el Perú fallan principalmente por problemas de escasez de personal técnico multisectorial debidamente cualificado. A manera de conclusión, propone la creación de una Plataforma Web 3.0 (metadatos), que utilice un Sistema de Razonamiento Basado en Casos (SRBC) para aprovechar el conocimiento que dimana de los éxitos y fracasos de los propios PIPs, con el fin de facilitar las gestiones de los miembros de la red que formulan, evalúan y ejecutan los PIPs en el Perú, tanto a nivel Municipal (GP) como Regional (GR) y Nacional (GN).