3 resultados para saturation magnetization
em Universidade Complutense de Madrid
Resumo:
The phase diagram of the double perovskites of the type Sr_(2-x)La_(x)FeMoO_(6) is analyzed, with and without disorder due to antisites. In addition to an homogeneous half metallic ferrimagnetic phase in the absence of doping and disorder, we find antiferromagnetic phases at large dopings, and other ferrimagnetic phases with lower saturation magnetization, in the presence of disorder.
Resumo:
We present a homogeneous study of chromospheric and coronal flux–flux relationships using a sample of 298 late-type dwarf active stars with spectral types F to M. The chromospheric lines were observed simultaneously in each star to avoid spread as a result of long-term variability. Unlike other works, we subtract the basal chromospheric contribution in all the spectral lines studied. For the first time, we quantify the departure of dMe stars from the general relations. We show that dK and dKe stars also deviate from the general trend. Studying the flux–colour diagrams, we demonstrate that the stars deviating from the general relations are those with saturated X-ray emission and we show that these stars also present saturation in the Hα line. Using several age spectral indicators, we show that these are younger stars than those following the general relationships. The non-universality of flux–flux relationships found in this work should be taken into account when converting between fluxes in different chromospheric activity indicators.
Resumo:
In artificial multiferroics hybrids consisting of ferromagnetic La_(0.7)Sr_(0.3)MnO_(3) (LSMO) and ferroelectric BaTiO_(3) epitaxial layers, net Ti moments are found from polarized resonant soft x-ray reflectivity and absorption. The Ti dichroic reflectivity follows the Mn signal during the magnetization reversal, indicating exchange coupling between the Ti and Mn ions. However, the Ti dichroic reflectivity shows stronger temperature dependence than the Mn dichroic signal. Besides a reduced ferromagnetic exchange coupling in the interfacial LSMO layer, this may also be attributed to a weak Ti-Mn exchange coupling that is insufficient to overcome the thermal energy at elevated temperatures.