4 resultados para sagnac interferometer

em Universidade Complutense de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the detection of the first extrasolar planet, ET-1 (HD 102195b), using the Exoplanet Tracker (ET), a new-generation Doppler instrument. The planet orbits HD 102195, a young star with solar metallicity that may be part of the local association. The planet imparts radial velocity variability to the star with a semiamplitude of 63.4 ± 2.0 m s^-1 and a period of 4.11 days. The planetary minimum mass (m sin i) is 0.488MJ ± 0.015M_J. The planet was initially detected in the spring of 2005 with the Kitt Peak National Observatory (KPNO) 0.9 m coudé feed telescope. The detection was confirmed by radial velocity observations with the ET at the KPNO 2.1 m telescope and also at the 9 m Hobby-Eberly Telescope (HET) with its High Resolution Spectrograph. This planetary discovery with a 0.9 m telescope around a V = 8.05 magnitude star was made possible by the high throughput of the instrument: 49% measured from the fiber output to the detector. The ET's interferometer-based approach is an effective method for planet detection. In addition, the ET concept is adaptable to multiple-object Doppler observations or very high precision observations with a cross-dispersed echelle spectrograph to separate stellar fringes over a broad wavelength band. In addition to spectroscopic observations of HD 102195, we obtained brightness measurements with one of the automated photometric telescopes at Fairborn Observatory. Those observations reveal that HD 102195 is a spotted variable star with an amplitude of ~0.015 mag and a 12.3 ± 0.3 day period. This is consistent with spectroscopically observed Ca II H and K emission levels and line-broadening measurements but inconsistent with rotational modulation of surface activity as the cause of the radial velocity variability. Our photometric observations rule out transits of the planetary companion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental setup to measure the three-dimensional phase-intensity distribution of an infrared laser beam in the focal region has been presented. It is based on the knife-edge method to perform a tomographic reconstruction and on a transport of intensity equation-based numerical method to obtain the propagating wavefront. This experimental approach allows us to characterize a focalized laser beam when the use of image or interferometer arrangements is not possible. Thus, we have recovered intensity and phase of an aberrated beam dominated by astigmatism. The phase evolution is fully consistent with that of the beam intensity along the optical axis. Moreover, this method is based on an expansion on both the irradiance and the phase information in a series of Zernike polynomials. We have described guidelines to choose a proper set of these polynomials depending on the experimental conditions and showed that, by abiding these criteria, numerical errors can be reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the optical design of the far infrared imaging spectrometer for the JAXA's SPICA mission. The SAFARI instrument, is a cryogenic imaging Fourier transform spectrometer (iFTS), designed to perform backgroundlimited spectroscopic and photometric imaging in the band 34-210 μm. The all-reflective optical system is highly modular and consists of three main modules; input optics module, interferometer module (FTS) and camera bay optics. A special study has been dedicated to the spectroscopic performance of the instrument, in which the spectral response and interference of the instrument have been modeled, as the FTS mechanism scans over the total desired OPD range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.