1 resultado para robust extended kalman filter
em Universidade Complutense de Madrid
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (21)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Boston University Digital Common (3)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (56)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (5)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (11)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (198)
- Instituto Politécnico do Porto, Portugal (8)
- Massachusetts Institute of Technology (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (27)
- Queensland University of Technology - ePrints Archive (324)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (18)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (31)
- Research Open Access Repository of the University of East London. (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (11)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (4)
- University of Queensland eSpace - Australia (3)
Resumo:
A new method for fitting a series of Zernike polynomials to point clouds defined over connected domains of arbitrary shape defined within the unit circle is presented in this work. The method is based on the application of machine learning fitting techniques by constructing an extended training set in order to ensure the smooth variation of local curvature over the whole domain. Therefore this technique is best suited for fitting points corresponding to ophthalmic lenses surfaces, particularly progressive power ones, in non-regular domains. We have tested our method by fitting numerical and real surfaces reaching an accuracy of 1 micron in elevation and 0.1 D in local curvature in agreement with the customary tolerances in the ophthalmic manufacturing industry.