2 resultados para representational overlap
em Universidade Complutense de Madrid
Resumo:
One of the main challenges of fuzzy community detection problems is to be able to measure the quality of a fuzzy partition. In this paper, we present an alternative way of measuring the quality of a fuzzy community detection output based on n-dimensional grouping and overlap functions. Moreover, the proposed modularity measure generalizes the classical Girvan–Newman (GN) modularity for crisp community detection problems and also for crisp overlapping community detection problems. Therefore, it can be used to compare partitions of different nature (i.e. those composed of classical, overlapping and fuzzy communities). Particularly, as is usually done with the GN modularity, the proposed measure may be used to identify the optimal number of communities to be obtained by any network clustering algorithm in a given network. We illustrate this usage by adapting in this way a well-known algorithm for fuzzy community detection problems, extending it to also deal with overlapping community detection problems and produce a ranking of the overlapping nodes. Some computational experiments show the feasibility of the proposed approach to modularity measures through n-dimensional overlap and grouping functions.
Resumo:
We study the sample-to-sample fluctuations of the overlap probability densities from large-scale equilibrium simulations of the three-dimensional Edwards-Anderson spin glass below the critical temperature. Ultrametricity, stochastic stability, and overlap equivalence impose constraints on the moments of the overlap probability densities that can be tested against numerical data. We found small deviations from the Ghirlanda Guerra predictions, which get smaller as system size increases. We also focus on the shape of the overlap distribution, comparing the numerical data to a mean-field-like prediction in which finite-size effects are taken into account by substituting delta functions with broad peaks.