2 resultados para quantum well intermixing

em Universidade Complutense de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that quantum correlations for bipartite dichotomic measurements are those of the form (Formula presented.), where the vectors ui and vj are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of (Formula presented.), where the previous vectors are sampled according to the Haar measure in the unit sphere of (Formula presented.). In particular, we prove the existence of an (Formula presented.) such that if (Formula presented.), (Formula presented.) is nonlocal with probability tending to 1 as (Formula presented.), while for (Formula presented.), (Formula presented.) is local with probability tending to 1 as (Formula presented.).