2 resultados para propagation of analytic singularities
em Universidade Complutense de Madrid
Resumo:
In this work we prove the real Nullstellensatz for the ring O(X) of analytic functions on a C-analytic set X ⊂ Rn in terms of the saturation of Łojasiewicz’s radical in O(X): The ideal I(Ƶ(a)) of the zero-set Ƶ(a) of an ideal a of O(X) coincides with the saturation (Formula presented) of Łojasiewicz’s radical (Formula presented). If Ƶ(a) has ‘good properties’ concerning Hilbert’s 17th Problem, then I(Ƶ(a)) = (Formula presented) where (Formula presented) stands for the real radical of a. The same holds if we replace (Formula presented) with the real-analytic radical (Formula presented) of a, which is a natural generalization of the real radical ideal in the C-analytic setting. We revisit the classical results concerning (Hilbert’s) Nullstellensatz in the framework of (complex) Stein spaces. Let a be a saturated ideal of O(Rn) and YRn the germ of the support of the coherent sheaf that extends aORn to a suitable complex open neighborhood of Rn. We study the relationship between a normal primary decomposition of a and the decomposition of YRn as the union of its irreducible components. If a:= p is prime, then I(Ƶ(p)) = p if and only if the (complex) dimension of YRn coincides with the (real) dimension of Ƶ(p).
Resumo:
Finite-Differences Time-Domain (FDTD) algorithms are well established tools of computational electromagnetism. Because of their practical implementation as computer codes, they are affected by many numerical artefact and noise. In order to obtain better results we propose using Principal Component Analysis (PCA) based on multivariate statistical techniques. The PCA has been successfully used for the analysis of noise and spatial temporal structure in a sequence of images. It allows a straightforward discrimination between the numerical noise and the actual electromagnetic variables, and the quantitative estimation of their respective contributions. Besides, The GDTD results can be filtered to clean the effect of the noise. In this contribution we will show how the method can be applied to several FDTD simulations: the propagation of a pulse in vacuum, the analysis of two-dimensional photonic crystals. In this last case, PCA has revealed hidden electromagnetic structures related to actual modes of the photonic crystal.