3 resultados para parallel computation model
em Universidade Complutense de Madrid
Resumo:
It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero-and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent a of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.
Resumo:
We perform numerical simulations, including parallel tempering, a four-state Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the critical temperature and the value of the critical exponents. Nevertheless, the extrapolation to infinite volume is hampered by strong scaling corrections. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the “random permutation” Potts glass.
Resumo:
It has been recently shown that the double exchange Hamiltonian, with weak antiferromagnetic interactions, has a richer variety of first- and second-order transitions than previously anticipated, and that such transitions are consistent with the magnetic properties of manganites. Here we present a thorough discussion of the variational mean-field approach that leads to these results. We also show that the effect of the Berry phase turns out to be crucial to produce first-order paramagnetic-ferromagnetic transitions near half filling with transition temperatures compatible with the experimental situation. The computation relies on two crucial facts: the use of a mean-field ansatz that retains the complexity of a system of electrons with off-diagonal disorder, not fully taken into account by the mean-field techniques, and the small but significant antiferromagnetic superexchange interaction between the localized spins.