2 resultados para overrun causes
em Universidade Complutense de Madrid
Resumo:
The purpose of this paper is to conduct a review of studies on cystoid macular edema published in the last seven years. Cystoid macular edema is a major cause of loss of visual acuity. It is the final common pathway of many diseases and can be caused by numerous processes including inflammatory, vascular, adverse drug reactions, retinal dystrophy or intraocular tumors. These processes disrupt the blood-retinal barrier, with fluid extravasation to the macular parenchyma. Imaging tests are essential for both detection and monitoring of this pathology. Fluorescein angiography and autofluorescence show the leakage of liquid from perifoveal vessels into the tissue where it forms cystic spaces. Optical coherence tomography is currently the gold standard technique for diagnosis and monitoring. This allows objective measurement of retinal thickness, which correlates with visual acuity and provides more complete morphological information. Based on the underlying etiology, the therapeutic approach can be either surgical or medical with anti-inflammatory drugs. We found that disruption of the blood-retinal barrier for various reasons is the key point in the pathogenesis of cystoid macular edema, therefore we believe that studies on its treatment should proceed on this path.
Resumo:
The Atlantic thermohaline circulation (THC) is an important part of the earth's climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere-ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-Sv (1 Sv equivalent to 10^6 ms^3 s^-1) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate sonic weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.