3 resultados para non-ideal problems

em Universidade Complutense de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let U be a domain in CN that is not a Runge domain. We study the topological and algebraic properties of the family of holomorphic functions on U which cannot be approximated by polynomials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend previous papers in the literature concerning the homogenization of Robin type boundary conditions for quasilinear equations, in the case of microscopic obstacles of critical size: here we consider nonlinear boundary conditions involving some maximal monotone graphs which may correspond to discontinuous or non-Lipschitz functions arising in some catalysis problems.