9 resultados para multiwavelength

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present coordinated multiwavelength observations of the bright, nearby BL Lacertae object Mrk 421 taken in 2013 January–March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very high energy (VHE) γ-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3–79 keV range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep G » 3 power law, with no evidence for an exponential cutoff or additional hard components up "aprox" 80keV. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure that relates to the two bumps of the broadband SED. In each bump, the variability increases with energy, which, in the framework of the synchrotron self-Compton model, implies that the electrons with higher energies are more variable. The measured multi band variability, the significant X-ray-toVHE correlation down to some of the lowest fluxes ever observed in both bands, the lack of correlation between optical/UV and X-ray flux, the low degree of polarization and its significant (random) variations, the short estimated electron cooling time, and the significantly longer variability timescale observed in the NuSTAR light curves point toward in situ electron acceleration and suggest that there are multiple compact regions contributing to the broadband emission of Mrk 421 during low-activity states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied in detail the properties of local active star-forming galaxies from the UCM survey, and in particular their star-formation histories. We have quantified the relative importance of the current episode of star formation in comparison to the underlying older stellar populations. We have also determined the total stellar mass function and burst mass function for the UCM sample using the M/L calculated for each galaxy. Integrating this mass function we obtained the contribution of the star-forming galaxies to the total stellar mass density of the local Universe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The BL Lac object 1ES 1011+496 was discovered at Very High Energy (VHE, E>100GeV) γ-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Mets¨ahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability yielding an integral flux above 200 GeV of (1.3 ± 0.3) × 10^(−11) photons cm^(−2) s^( −1) . The differential VHE spectrum could be described with a power-law function with a spectral index of 3.3 ± 0.4. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder-when-brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE γ-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on non-simultaneous data, and is well described by a standard one–zone synchrotron self–Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present optical integral field spectroscopy (IFS) observations of the Mice, a major merger between two massive (≳10^11 M_⊙) gas-rich spirals NGC 4676A and B, observed between first passage and final coalescence. The spectra provide stellar and gas kinematics, ionised gas properties, and stellar population diagnostics, over the full optical extent of both galaxies with ~1.6 kpc spatial resolution. The Mice galaxies provide a perfect case study that highlights the importance of IFS data for improving our understanding of local galaxies. The impact of first passage on the kinematics of the stars and gas has been significant, with strong bars most likely induced in both galaxies. The barred spiral NGC 4676B exhibits a strong twist in both its stellar and ionised gas disk. The edge-on disk galaxy NGC 4676A appears to be bulge free, with a strong bar causing its “boxy” light profile. On the other hand, the impact of the merger on the stellar populations has been minimal thus far. By combining the IFS data with archival multiwavelength observations we show that star formation induced by the recent close passage has not contributed significantly to the total star formation rate or stellar mass of the galaxies. Both galaxies show bicones of high ionisation gas extending along their minor axes. In NGC 4676A the high gas velocity dispersion and Seyfert-like line ratios at large scaleheight indicate a powerful outflow. Fast shocks (vs ~ 350 km s^-1) extend to ~6.6 kpc above the disk plane. The measured ram pressure (P/k = 4.8 × 10^6 K cm^-3) and mass outflow rate (~8−20 M_⊙ yr^-1) are similar to superwinds from local ultra-luminous infrared galaxies, although NGC 4676A only has a moderate infrared luminosity of 3 × 10^10 L_⊙. Energy beyond what is provided by the mechanical energy of the starburst appears to be required to drive the outflow. Finally, we compare the observations to mock kinematic and stellar population maps extracted from a hydrodynamical merger simulation. The models show little enhancement in star formation during and following first passage, in agreement with the observations. We highlight areas where IFS data could help further constrain the models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is part of a multiwavelength study aimed at using complementary photometric, polarimetric and spectroscopic data to achieve an understanding of the activity process in late-type stars. Here, we present the study of FR Cnc, a young, active and spotted star. We performed analysis of All Sky Automated Survey 3 (ASAS-3) data for the years 2002–08 and amended the value of the rotational period to be 0.826518 d. The amplitude of photometric variations decreased abruptly in the year 2005, while the mean brightness remained the same, which was interpreted as a quick redistribution of spots. BVR_C and I_C broad-band photometric calibration was performed for 166 stars in FR Cnc vicinity. The photometry at Terskol Observatory shows two brightening episodes, one of which occurred at the same phase as the flare of 2006 November 23. Polarimetric BVR observations indicate the probable presence of a supplementary source of polarization. We monitored FR Cnc spectroscopically during the years 2004–08. We concluded that the radial velocity changes cannot be explained by the binary nature of FR Cnc. We determined the spectral type of FR Cnc as K7V. Calculated galactic space-velocity components (U, V, W) indicate that FR Cnc belongs to the young disc population and might also belong to the IC 2391 moving group. Based on Li Iλ6707.8 measurement, we estimated the age of FR Cnc to be between 10 and 120 Myr. Doppler tomography was applied to create a starspot image of FR Cnc. We optimized the goodness of fit to the deconvolved profiles for axial inclination, equivalent width and v sin i, finding v sin  i=46.2 km s^−1 and i= 55°. We also generated a syntheticV-band light curve based on Doppler imaging that makes simultaneous use of spectroscopic and photometric data. This synthetic light curve displays the same morphology and amplitude as the observed one. The starspot distribution of FR Cnc is also of interest since it is one of the latest spectral types to have been imaged. No polar spot was detected on FR Cnc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chandra data in the COSMOS, AEGIS-XD and 4 Ms Chandra Deep Field South are combined with multiwavelength photometry available in those fields to determine the rest-frame U − V versus V − J colours of X-ray AGN hosts in the redshift intervals 0.1 < z < 0.6 (mean z¯=0.40) and 0.6 < z < 1.2 (mean z¯=0.85). This combination of colours provides an effective and least model-dependent means of separating quiescent from star-forming, including dust reddened, galaxies. Morphological information emphasizes differences between AGN populations split by their U − V versus V − J colours. AGN in quiescent galaxies consist almost exclusively of bulges, while star-forming hosts are equally split between early- and late-type hosts. The position of AGN hosts on the U − V versusV − J diagram is then used to set limits on the accretion density of the Universe associated with evolved and star-forming systems independent of dust induced biases. It is found that most of the black hole growth at z≈ 0.40 and 0.85 is associated with star-forming hosts. Nevertheless, a non-negligible fraction of the X-ray luminosity density, about 15–20 per cent, at both z¯=0.40 and 0.85, is taking place in galaxies in the quiescent region of the U − V versus V − J diagram. For the low-redshift sub-sample, 0.1 < z < 0.6, we also find tentative evidence, significant at the 2σ level, that AGN split by their U − V and V − J colours have different Eddington ratio distributions. AGN in blue star-forming hosts dominate at relatively high Eddington ratios. In contrast, AGN in red quiescent hosts become increasingly important as a fraction of the total population towards low Eddington ratios. At higher redshift, z > 0.6, such differences are significant at the 2σ level only for sources with Eddington ratios ≳ 10^− 3. These findings are consistent with scenarios in which diverse accretion modes are responsible for the build-up of supermassive black holes at the centres of galaxies. We compare these results with the predictions of theGALFORM semi-analytic model for the cosmological evolution of AGN and galaxies. This model postulates two black hole fuelling modes, the first is linked to star formation events and the second takes place in passive galaxies. GALFORM predicts that a substantial fraction of the black hole growth at z < 1 is associated with quiescent galaxies, in apparent conflict with the observations. Relaxing the strong assumption of the model that passive AGN hosts have zero star formation rate could bring those predictions in better agreement with the data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z ~ 1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in 2 hr exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [O III]/Hβ ratio is insufficient as an active galactic nucleus (AGN) indicator at z > 1. For the four X-ray-detected galaxies, the classic diagnostics ([O III]/Hβ versus [N II]/Hα and [S II]/Hα) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that "composite" galaxies (with intermediate AGN/SF classification) host bona fide AGNs. Nearly ~2/3 of the z ~ 1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z > 1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining an accurate position for a submillimetre (submm) galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2D clustering - to an assessment of their detailed, multiwavelength properties, their contribution to the history of cosmic star formation and their links with present-day galaxy populations. In this paper, we identify robust radio and/or infrared (IR) counterparts, and hence accurate positions, for over two-thirds of the SCUBA HAlf-Degree Extragalactic Survey (SHADES) Source Catalogue, presenting optical, 24-μm and radio images of each SMG. Observed trends in identification rate have given no strong rationale for pruning the sample. Uncertainties in submm position are found to be consistent with theoretical expectations, with no evidence for significant additional sources of error. Employing the submm/radio redshift indicator, via a parametrization appropriate for radio-identified SMGs with spectroscopic redshifts, yields a median redshift of 2.8 for the radio-identified subset of SHADES, somewhat higher than the median spectroscopic redshift. We present a diagnostic colour-colour plot, exploiting Spitzer photometry, in which we identify regions commensurate with SMGs at very high redshift. Finally, we find that significantly more SMGs have multiple robust counterparts than would be expected by chance, indicative of physical associations. These multiple systems are most common amongst the brightest SMGs and are typically separated by 2-6 arcsec, similar to 15-20/sin i kpc at z~ 2, consistent with early bursts seen in merger simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We define a sample of 62 galaxies in the Chandra Deep Field-North whose Spitzer IRAC SEDs exhibit the characteristic power-law emission expected of luminous AGNs. We study the multiwavelength properties of this sample and compare the AGNs selected in this way to those selected via other Spitzer color-color criteria. Only 55% of the power-law galaxies are detected in the X-ray catalog at exposures of >0.5 Ms, although a search for faint emission results in the detection of 85% of the power-law galaxies at the ≥2.5 σ detection level. Most of the remaining galaxies are likely to host AGNs that are heavily obscured in the X-ray. Because the power-law selection requires the AGNs to be energetically dominant in the near- and mid-infrared, the power-law galaxies comprise a significant fraction of the Spitzer-detected AGN population at high luminosities and redshifts. The high 24 μm detection fraction also points to a luminous population. The power-law galaxies comprise a subset of color-selected AGN candidates. A comparison with various mid-infrared color selection criteria demonstrates that while the color-selected samples contain a larger fraction of the X-ray-luminous AGNs, there is evidence that these selection techniques also suffer from a higher degree of contamination by star-forming galaxies in the deepest exposures. Considering only those power-law galaxies detected in the X-ray catalog, we derive an obscured fraction of 68% (2 : 1). Including all of the power-law galaxies suggests an obscured fraction of <81% (4 : 1).