4 resultados para model state durations

em Universidade Complutense de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We perform numerical simulations, including parallel tempering, a four-state Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the critical temperature and the value of the critical exponents. Nevertheless, the extrapolation to infinite volume is hampered by strong scaling corrections. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the “random permutation” Potts glass.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the critical properties of the four-state commutative random permutation glassy Potts model in three and four dimensions by means of Monte Carlo simulations and a finite-size scaling analysis. By using a field programmable gate array, we have been able to thermalize a large number of samples of systems with large volume. This has allowed us to observe a spin-glass ordered phase in d=4 and to study the critical properties of the transition. In d=3, our results are consistent with the presence of a Kosterlitz-Thouless transition, but also with different scenarios: transient effects due to a value of the lower critical dimension slightly below 3 could be very important.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study nonequilibrium processes in an isolated quantum system-the Dicke model-focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied numerically the effect of quenched site dilution on a weak first-order phase transition in three dimensions. We have simulated the site diluted three-states Potts model studying in detail the secondorder region of its phase diagram. We have found that the n exponent is compatible with the one of the three-dimensional diluted Ising model, whereas the h exponent is definitely different.