3 resultados para mass-selected low energy ion beam deposition

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study of the star-forming properties of a stellar mass-selected sample of galaxies in the GOODS (Great Observatories Origins Deep Survey) NICMOS Survey (GNS), based on deep Hubble Space Telescope (HST) imaging of the GOODS North and South fields. Using a stellar mass-selected sample, combined with HST/ACS and Spitzer data to measure both ultraviolet (UV) and infrared-derived star formation rates (SFRs), we investigate the star forming properties of a complete sample of ∼1300 galaxies down to log M_*= 9.5 at redshifts 1.5 < z < 3. Eight per cent of the sample is made up of massive galaxies with M_*≥ 10^11 M_⊙. We derive optical colours, dust extinctions and UV and infrared SFR to determine how the SFR changes as a function of both stellar mass and time. Our results show that SFR increases at higher stellar mass such that massive galaxies nearly double their stellar mass from star formation alone over the redshift range studied, but the average value of SFR for a given stellar mass remains constant over this ∼2 Gyr period. Furthermore, we find no strong evolution in the SFR for our sample as a function of mass over our redshift range of interest; in particular we do not find a decline in the SFR among massive galaxies, as is seen at z < 1. The most massive galaxies in our sample (log M_*≥ 11) have high average SFRs with values SFR_UV, corr= 103 ± 75 M_⊙ yr^−1, and yet exhibit red rest-frame (U−B) colours at all redshifts. We conclude that the majority of these red high-redshift massive galaxies are red due to dust extinction. We find that A_2800 increases with stellar mass, and show that between 45 and 85 per cent of massive galaxies harbour dusty star formation. These results show that even just a few Gyr after the first galaxies appear, there are strong relations between the global physical properties of galaxies, driven by stellar mass or another underlying feature of galaxies strongly related to the stellar mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from (10,12-18C) and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1 pxn) for relativistic C-10,C-12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the EPAX code is not able to describe the data satisfactorily. Using ABRABLA07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease ABRABLA07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the stellar and star formation properties of the host galaxies of 58 X-ray-selected AGNs in the GOODS portion of the Chandra Deep Field South (CDF-S) region at z ~ 0.5-1.4. The AGNs are selected such that their rest-frame UV to near-infrared spectral energy distributions (SEDs) are dominated by stellar emission; i.e., they show a prominent 1.6 μm bump, thus minimizing the AGN emission "contamination." This AGN population comprises approximately 50% of the X-ray-selected AGNs at these redshifts. We find that AGNs reside in the most massive galaxies at the redshifts probed here. Their characteristic stellar masses (M_* ~ 7.8 × 10^10 and M_* ~ 1.2 × 10^11 M_☉ at median redshifts of 0.67 and 1.07, respectively) appear to be representative of the X-ray-selected AGN population at these redshifts and are intermediate between those of local type 2 AGNs and high-redshift (z ~ 2) AGNs. The inferred black hole masses (M_BH ~ 2 × 10^8 M_☉) of typical AGNs are similar to those of optically identified quasars at similar redshifts. Since the AGNs in our sample are much less luminous (L_2–10 keV < 10^44 erg s^−1) than quasars, typical AGNs have low Eddington ratios (η ~ 0.01-0.001). This suggests that, at least at intermediate redshifts, the cosmic AGN "downsizing" is due to both a decrease in the characteristic stellar mass of typical host galaxies and less efficient accretion. Finally, there is no strong evidence in AGN host galaxies for either highly suppressed star formation (expected if AGNs played a role in quenching star formation) or elevated star formation when compared to mass-selected (i.e., IRAC-selected) galaxies of similar stellar masses and redshifts.