2 resultados para lending electronic materials

em Universidade Complutense de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOO^(R(n)pyH)] + and BF_(4)^(-) , ReO_(4)^(-), NO_(3)^(-), CF_(3)SO_(3)^(-), CuCl_(4)^(2-) counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOO^(R(12)pyH)][ReO_(4)] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl_(4)^(2-) salts exhibit the best LC properties followed by the ReO_(4)^(-) ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO_(4)^(-) , and CuCl_(4)^(2-) families, and for the solid phase in one of the non-mesomorphic Cl^(-) salts. The highest ionic conductivity was found for the smectic mesophase of the ReO_(4)^(-) containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that the double-exchange Hamiltonian, with weak antiferromagnetic interactions, has a rich variety of first-order transitions between phases with different electronic densities and/or magnetizations. The paramagnetic-ferromagnetic transition moves towards lower temperatures, and becomes discontinuous as the relative strength of the double-exchange mechanism and antiferromagnetic coupling is changed. This trend is consistent with the observed differences between compounds with the same nominal doping, such as La_(2/3)Sr_(1/3)MnO_(3) and La_(2/3)Ca_(1/3)MnO_(3). Our results suggest that, in the low doping regime, a simple magnetic mechanism suffices to explain the main features of the phase diagram.