3 resultados para learning in animals
em Universidade Complutense de Madrid
Resumo:
Through the creation of this project in English, we have made a file of radiographic images that will be used by third year dental students in order to improve the practical teaching part of the subject of Oral Medicine, essentially by incorporating these files to the Virtual Campus. We have selected the most representative radiopaque radiographic images studied in pathology lectures given. We have prepared a file with 59 radiopaque radiographic images. These lesions have been divided according to their relationship and number with the tooth, into the following groups: “Anatomic radiopacities”, “Periapical radiopacities”, “Solitary radiopacities not necessarily contacting teeth”,“Multiple separate radiopacities”, and “Generalized radiopacities”. We created 4 flowcharts synthesizing the mayor explanatory bases of each pathological process in relation to other pathologies within each location. We have focused primarily in those clinical and radiographic features that can help us differentiate one pathology from another. We believe that by giving the student a knowledge base through each flowchart, as well as provide clinical cases, will start their curiosity to seek new cases on the Internet or try to look for images that we have not been able to locate due to low frequency. In addition, as this project has been done in English, it will provide the students with necessary tools to do a literature search, as most of the medical and dental literature is in English; thus far, providing the student with this material necessary to make the appropriate searched using keywords in English.
Resumo:
The synchronization of oscillatory activity in networks of neural networks is usually implemented through coupling the state variables describing neuronal dynamics. In this study we discuss another but complementary mechanism based on a learning process with memory. A driver network motif, acting as a teacher, exhibits winner-less competition (WLC) dynamics, while a driven motif, a learner, tunes its internal couplings according to the oscillations observed in the teacher. We show that under appropriate training the learner motif can dynamically copy the coupling pattern of the teacher and thus synchronize oscillations with the teacher. Then, we demonstrate that the replication of the WLC dynamics occurs for intermediate memory lengths only. In a unidirectional chain of N motifs coupled through teacher-learner paradigm the time interval required for pattern replication grows linearly with the chain size, hence the learning process does not blow up and at the end we observe phase synchronized oscillations along the chain. We also show that in a learning chain closed into a ring the network motifs come to a consensus, i.e. to a state with the same connectivity pattern corresponding to the mean initial pattern averaged over all network motifs.
Resumo:
The objective of this study was to determine the dynamics and diversity of Escherichia coli populations in animal and environmental lines of a commercial farrow-to-finish pig farm in Spain along a full production cycle (July 2008 to July 2009), with special attention to antimicrobial resistance and the presence of integrons. In the animal line, a total of 256 isolates were collected from pregnant sows (10 samples and 20 isolates), 1-week-old piglets (20 samples and 40 isolates), unweaned piglets (20 samples and 38 isolates), growers (20 samples and 40 isolates), and the finishers' floor pen (6 samples and 118 isolates); from the underfloor pits and farm slurry tank environmental lines, 100 and 119 isolates, respectively, were collected. Our results showed that E. coli populations in the pig fecal microbiota and in the farm environment are highly dynamic and show high levels of diversity. These issues have been proven through DNA-based typing data (repetitive extragenic palindromic PCR [REP-PCR]) and phenotypic typing data (antimicrobial resistance profile comprising 19 antimicrobials). Clustering of the sampling groups based on their REP-PCR typing results showed that the spatial features (the line) had a stronger weight than the temporal features (sampling week) for the clustering of E. coli populations; this weight was less significant when clustering was performed based on resistotypes. Among animals, finishers harbored an E. coli population different from those of the remaining animal populations studied, considering REP-PCR fingerprints and resistotypes. This population, the most important from a public health perspective, demonstrated the lowest levels of antimicrobial resistance and integron presence.