2 resultados para in-plane strain
em Universidade Complutense de Madrid
Resumo:
Streptococcus suis is an emerging zoonotic pathogen. With the lack of an effective vaccine, antibiotics remain the main tool to fight infections caused by this pathogen. We have previously observed a reserpine-sensitive fluoroquinolone (FQ) efflux phenotype in this species. Here, SatAB and SmrA, two pumps belonging to the ATP binding cassette (ABC) and the major facilitator superfamily (MFS), respectively, have been analyzed in the fluoroquinolone-resistant clinical isolate BB1013. Genes encoding these pumps were overexpressed either constitutively or in the presence of ciprofloxacin in this strain. These genes could not be cloned in plasmids in Escherichia coli despite strong expression repression. Finally, site-directed insertion of smrA and satAB in the amy locus of the Bacillus subtilis chromosome using ligated PCR amplicons allowed for the functional expression and study of both pumps. Results showed that SatAB is a narrow-spectrum fluoroquinolone exporter (norfloxacin and ciprofloxacin), susceptible to reserpine, whereas SmrA was not involved in fluoroquinolone resistance. Chromosomal integration in Bacillus is a novel method for studying efflux pumps from Gram-positive bacteria, which enabled us to demonstrate the possible role of SatAB, and not SmrA, in fluoroquinolone efflux in S. suis.
Resumo:
In this paper we analyze the structure of Fe-Ga layers with a Ga content of ∼30 at.% deposited by the sputtering technique under two different regimes. We also studied the correlation between the structure and magnetic behavior of the samples. Keeping the Ar pressure fixed, we modified the flow regime from ballistic to diffusive by increasing the distance between the target and the substrate. X-ray diffraction measurements have shown a lower structural quality when growing in the diffusive flow. We investigated the impact of the growth regime by means of x-ray absorption fine structure (XAFS) measurements and obtained signs of its influence on the local atomic order. Full multiple scattering and finite difference calculations based on XAFS measurements point to a more relevant presence of a disordered A2 phase and of orthorhombic Ga clusters on the Fe-Ga alloy deposited under a diffusive regime; however, in the ballistic sample, a higher presence of D0_3/B2 phases is evidenced. Structural characteristics, from local to long range, seem to determine the magnetic behavior of the layers. Whereas a clear in-plane magnetic anisotropy is observed in the film deposited under ballistic flow, the diffusive sample is magnetically isotropic. Therefore, our experimental results provide evidence of a correlation between flow regime and structural properties and its impact on the magnetic behavior of a rather unexplored compositional region of Fe-Ga compounds.