2 resultados para importance analysis

em Universidade Complutense de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates a connection between data envelopment analysis (DEA) and a non-interactive elicitation method to estimate the weights of objectives for decision-makers in a multiple attribute approach. This connection gives rise to a modified DEA model that allows us to estimate not only efficiency measures but also preference weights by radially projecting each unit onto a linear combination of the elements of the payoff matrix (which is obtained by standard multicriteria methods). For users of multiple attribute decision analysis the basic contribution of this paper is a new interpretation in terms of efficiency of the non-interactive methodology employed to estimate weights in a multicriteria approach. We also propose a modified procedure to calculate an efficient payoff matrix and a procedure to estimate weights through a radial projection rather than a distance minimization. For DEA users, we provide a modified DEA procedure to calculate preference weights and efficiency measures that does not depend on any observations in the dataset. This methodology has been applied to an agricultural case study in Spain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed six apiaries in several natural environments with a Mediterranean ecosystem in Madrid, central Spain, in order to understand how landscape and management characteristics may influence apiary health and bee production in the long term. We focused on five criteria (habitat quality, landscape heterogeneity, climate, management and health), as well as 30 subcriteria, and we used the analytic hierarchy process (AHP) to rank them according to relevance. Habitat quality proved to have the highest relevance, followed by beehive management. Within habitat quality, the following subcriteria proved to be most relevant: orographic diversity, elevation range and important plant species located 1.5 km from the apiary. The most important subcriteria under beehive management were honey production, movement of the apiary to a location with a higher altitude and wax renewal. Temperature was the most important subcriterion under climate, while pathogen and Varroa loads were the most significant under health. Two of the six apiaries showed the best values in the AHP analysis and showed annual honey production of 70 and 28 kg/colony. This high productivity was due primarily to high elevation range and high orographic diversity, which favored high habitat quality. In addition, one of these apiaries showed the best value for beehive management, while the other showed the best value for health, reflected in the low pathogen load and low average number of viruses. These results highlight the importance of environmental factors and good sanitary practices to maximize apiary health and honey productivity.