2 resultados para hierarchical Bayesian models

em Universidade Complutense de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

¿What have we learnt from the 2006-2012 crisis, including events such as the subprime crisis, the bankruptcy of Lehman Brothers or the European sovereign debt crisis, among others? It is usually assumed that in firms that have a CDS quotation, this CDS is the key factor in establishing the credit premiumrisk for a new financial asset. Thus, the CDS is a key element for any investor in taking relative value opportunities across a firm’s capital structure. In the first chapter we study the most relevant aspects of the microstructure of the CDS market in terms of pricing, to have a clear idea of how this market works. We consider that such an analysis is a necessary point for establishing a solid base for the rest of the chapters in order to carry out the different empirical studies we perform. In its document “Basel III: A global regulatory framework for more resilient banks and banking systems”, Basel sets the requirement of a capital charge for credit valuation adjustment (CVA) risk in the trading book and its methodology for the computation for the capital requirement. This regulatory requirement has added extra pressure for in-depth knowledge of the CDS market and this motivates the analysis performed in this thesis. The problem arises in estimating of the credit risk premium for those counterparties without a directly quoted CDS in the market. How can we estimate the credit spread for an issuer without CDS? In addition to this, given the high volatility period in the credit market in the last few years and, in particular, after the default of Lehman Brothers on 15 September 2008, we observe the presence of big outliers in the distribution of credit spread in the different combinations of rating, industry and region. After an exhaustive analysis of the results from the different models studied, we have reached the following conclusions. It is clear that hierarchical regression models fit the data much better than those of non-hierarchical regression. Furthermore,we generally prefer the median model (50%-quantile regression) to the mean model (standard OLS regression) due to its robustness when assigning the price to a new credit asset without spread,minimizing the “inversion problem”. Finally, an additional fundamental reason to prefer the median model is the typical "right skewness" distribution of CDS spreads...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Esta tesis doctoral nace con el propósito de entender, analizar y sobre todo modelizar el comportamiento estadístico de las series financieras. En este sentido, se puede afirmar que los modelos que mejor recogen las especiales características de estas series son los modelos de heterocedasticidad condicionada en tiempo discreto,si los intervalos de tiempo en los que se recogen los datos lo permiten, y en tiempo continuo si tenemos datos diarios o datos intradía. Con esta finalidad, en esta tesis se proponen distintos estimadores bayesianos para la estimación de los parámetros de los modelos GARCH en tiempo discreto (Bollerslev (1986)) y COGARCH en tiempo continuo (Kluppelberg et al. (2004)). En el capítulo 1 se introducen las características de las series financieras y se presentan los modelos ARCH, GARCH y COGARCH, así como sus principales propiedades. Mandelbrot (1963) destacó que las series financieras no presentan estacionariedad y que sus incrementos no presentan autocorrelación, aunque sus cuadrados sí están correlacionados. Señaló también que la volatilidad que presentan no es constante y que aparecen clusters de volatilidad. Observó la falta de normalidad de las series financieras, debida principalmente a su comportamiento leptocúrtico, y también destacó los efectos estacionales que presentan las series, analizando como se ven afectadas por la época del año o el día de la semana. Posteriormente Black (1976) completó la lista de características especiales incluyendo los denominados leverage effects relacionados con como las fluctuaciones positivas y negativas de los precios de los activos afectan a la volatilidad de las series de forma distinta.