1 resultado para goal-oriented requirements engineering
em Universidade Complutense de Madrid
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (15)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (15)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (2)
- Aston University Research Archive (44)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (86)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (21)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (38)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (12)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (17)
- Digital Commons - Michigan Tech (9)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (19)
- Digital Peer Publishing (3)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (64)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (72)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (41)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- Repositorio Institucional Universidad de Medellín (4)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (32)
- Scielo Saúde Pública - SP (6)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (61)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (14)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (16)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (8)
- Université de Lausanne, Switzerland (10)
- Université de Montréal, Canada (5)
- University of Michigan (10)
- University of Queensland eSpace - Australia (130)
- University of Southampton, United Kingdom (3)
- University of Washington (3)
Resumo:
Recent technological developments in the field of experimental quantum annealing have made prototypical annealing optimizers with hundreds of qubits commercially available. The experimental demonstration of a quantum speedup for optimization problems has since then become a coveted, albeit elusive goal. Recent studies have shown that the so far inconclusive results, regarding a quantum enhancement, may have been partly due to the benchmark problems used being unsuitable. In particular, these problems had inherently too simple a structure, allowing for both traditional resources and quantum annealers to solve them with no special efforts. The need therefore has arisen for the generation of harder benchmarks which would hopefully possess the discriminative power to separate classical scaling of performance with size from quantum. We introduce here a practical technique for the engineering of extremely hard spin-glass Ising-type problem instances that does not require "cherry picking" from large ensembles of randomly generated instances. We accomplish this by treating the generation of hard optimization problems itself as an optimization problem, for which we offer a heuristic algorithm that solves it. We demonstrate the genuine thermal hardness of our generated instances by examining them thermodynamically and analyzing their energy landscapes, as well as by testing the performance of various state-of-the-art algorithms on them. We argue that a proper characterization of the generated instances offers a practical, efficient way to properly benchmark experimental quantum annealers, as well as any other optimization algorithm.