1 resultado para genetic algorithm-kernel partial least squares
em Universidade Complutense de Madrid
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (3)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (43)
- Biblioteca de Teses e Dissertações da USP (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (69)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (23)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CentAUR: Central Archive University of Reading - UK (99)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (11)
- Collection Of Biostatistics Research Archive (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (17)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (6)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (11)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Leiria (2)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (58)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (25)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (10)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositorio Academico Digital UANL (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (6)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (17)
- Repositório da Produção Científica e Intelectual da Unicamp (12)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (2)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Brasília (3)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (115)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (18)
- Scielo Saúde Pública - SP (46)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (27)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (2)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (16)
- Universidade Metodista de São Paulo (11)
- Universidade Técnica de Lisboa (3)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (12)
- Université de Montréal, Canada (7)
- University of Michigan (6)
- University of Queensland eSpace - Australia (47)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
We present a modelling method to estimate the 3-D geometry and location of homogeneously magnetized sources from magnetic anomaly data. As input information, the procedure needs the parameters defining the magnetization vector (intensity, inclination and declination) and the Earth's magnetic field direction. When these two vectors are expected to be different in direction, we propose to estimate the magnetization direction from the magnetic map. Then, using this information, we apply an inversion approach based on a genetic algorithm which finds the geometry of the sources by seeking the optimum solution from an initial population of models in successive iterations through an evolutionary process. The evolution consists of three genetic operators (selection, crossover and mutation), which act on each generation, and a smoothing operator, which looks for the best fit to the observed data and a solution consisting of plausible compact sources. The method allows the use of non-gridded, non-planar and inaccurate anomaly data and non-regular subsurface partitions. In addition, neither constraints for the depth to the top of the sources nor an initial model are necessary, although previous models can be incorporated into the process. We show the results of a test using two complex synthetic anomalies to demonstrate the efficiency of our inversion method. The application to real data is illustrated with aeromagnetic data of the volcanic island of Gran Canaria (Canary Islands).