2 resultados para galaxies: groups: individual (HCG 7)

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present measurements of the mean mid-infrared to submillimetre flux densities of massive (M_*≳ 10^11 M_⊙) galaxies at redshifts 1.7 < z < 2.9, obtained by stacking positions of known objects taken from the GOODS NICMOS Survey (GNS) catalogue on maps at 24 μm (Spitzer/MIPS); 70, 100 and 160 μm (Herschel/PACS); 250, 350 and 500 μm (BLAST); and 870 μm (LABOCA). A modified blackbody spectrum fit to the stacked flux densities indicates a median [interquartile] star formation rate (SFR) of SFR = 63[48, 81] M_⊙ yr^−1. We note that not properly accounting for correlations between bands when fitting stacked data can significantly bias the result. The galaxies are divided into two groups, disc-like and spheroid-like, according to their Sérsic indices, n. We find evidence that most of the star formation is occurring in n≤ 2 (disc-like) galaxies, with median [interquartile] SFR = 122[100, 150] M_⊙ yr^−1, while there are indications that the n > 2 (spheroid-like) population may be forming stars at a median [interquartile] SFR = 14[9, 20] M_⊙ yr^−1, if at all. Finally, we show that star formation is a plausible mechanism for size evolution in this population as a whole, but find only marginal evidence that it is what drives the expansion of the spheroid-like galaxies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the use of the rest-frame 24 μm luminosity as an indicator of the star formation rate (SFR) in galaxies with different metallicities by comparing it to the (extinction-corrected) Hα luminosity. We carry out this analysis in two steps: First, we compare the emission from H (II) regions in different galaxies with metallicities between 12 + and 8.9. We find that the 24 μm and the extinction-corrected Hα luminosities from individual H (II) log (O/H) = 8.1 regions follow the same correlation for all galaxies, independent of their metallicity. Second, the role of metallicity is explored further for the integrated luminosity in a sample of galaxies with metallicities in the range of 12 +. For this sample we compare the 24 μm and Hα luminosities integrated over the entire galaxies log (O/ H) = 7.2-9.1 and find a lack of the 24 μm emission for a given Hα luminosity for low-metallicity objects, likely reflecting a low dust content. These results suggest that the 24 μm luminosity is a good metallicity-independent tracer for the SFR in individual H (II) regions. On the other hand, metallicity has to be taken into account when using the 24 μm luminosity as a tracer for the SFR of entire galaxies.