4 resultados para electronic transition energy

em Universidade Complutense de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the observation of the insulator-to-metal transition in crystalline silicon samples supersaturated with vanadium. Ion implantation followed by pulsed laser melting and rapid resolidification produce high quality single-crystalline silicon samples with vanadium concentrations that exceed equilibrium values in more than 5 orders of magnitude. Temperature-dependent analysis of the conductivity and Hall mobility values for temperatures from 10K to 300K indicate that a transition from an insulating to a metallic phase is obtained at a vanadium concentration between 1.1 × 10^(20) and 1.3 × 10^(21) cm^(−3) . Samples in the insulating phase present a variable-range hopping transport mechanism with a Coulomb gap at the Fermi energy level. Electron wave function localization length increases from 61 to 82 nm as the vanadium concentration increases in the films, supporting the theory of impurity band merging from delocalization of levels states. On the metallic phase, electronic transport present a dispersion mechanism related with the Kondo effect, suggesting the presence of local magnetic moments in the vanadium supersaturated silicon material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on integral-, momentum transfer-and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C5H4O2). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (N-open) at either the static-exchange (N-open ch-SE) or the static-exchange-plus-polarisation (N-open ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channel coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections. (C) 2016 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first detailed numerical study in three dimensions of a first-order phase transition that remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a detailed numerical study on the effects of adding quenched impurities to a three dimensional system which in the pure case undergoes a strong first order phase transition (specifically, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). We can state that the transition remains first-order in the presence of quenched disorder (a small amount of it) but it turns out to be second order as more impurities are added. A tricritical point, which is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the critical line. The results were made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that arise using the standard methodology. We also made use of a recently proposed microcanonical Monte Carlo method in which entropy, instead of free energy, is the basic quantity.