4 resultados para downloading of data
em Universidade Complutense de Madrid
Resumo:
The UCM Instrumentation Group (GUAIX) is developing currently Data Reduction Pipelines (DRP) for four instruments of the GTC: EMIR, FRIDA, MEGARA and MIRADAS. The purpose of the DRPs is to provide astronomers scientific quality data, removing instrumental biases, calibrating the images in physical units and providing a estimation of the associated uncertainties.
Resumo:
Lapid, Ulrich, and Rammsayer (2008) reported that estimates of the difference limen (DL) from a two-alternative forced choice (2AFC) task are higher than those obtained from a reminder task. This article reanalyzes their data in order to correct an error in their estimates of the DL from 2AFC data. We also extend the psychometric functions fitted to data from both tasks to incorporate an extra parameter that has been shown to allow obtaining accurate estimates of the DL that are unaffected by lapses. Contrary to Lapid et al.'s conclusion, our reanalysis shows that DLs estimated with the 2AFC task are only minimally (and not always significantly) larger than those estimated with the reminder task. We also show that their data are contaminated by response bias, and that the small remaining difference between DLs estimated with 2AFC and reminder tasks can be reasonably attributed to the differential effects that response bias has in either task as they were defined in Lapid et al.'s experiments. Finally, we discuss a novel approach presented by Ulrich and Vorberg (2009) for fitting psychometric functions to 2AFC discrimination data.
Resumo:
We recently published an article (García-Pérez & Alcalá- Quintana, 2010) reanalyzing data presented by Lapid, Ulrich, and Rammsayer (2008) and discussing a theoretical argument developed by Ulrich and Vorberg (2009). The purpose of this note is to correct an error in our study that has some theoretical importance, although it does not affect the conclusion that was raised. The error lies in that asymptote parameters reflecting lapses or finger errors should not enter the constraint relating the psychometric functions that describe performance when the comparison stimulus in a two-alternative forced choice (2AFC) discrimination task is presented in the first or second interval.
Resumo:
Time perception is studied with subjective or semi-objective psychophysical methods. With subjective methods, observers provide quantitative estimates of duration and data depict the psychophysical function relating subjective duration to objective duration. With semi-objective methods, observers provide categorical or comparative judgments of duration and data depict the psychometric function relating the probability of a certain judgment to objective duration. Both approaches are used to study whether subjective and objective time run at the same pace or whether time flies or slows down under certain conditions. We analyze theoretical aspects affecting the interpretation of data gathered with the most widely used semi-objective methods, including single-presentation and paired-comparison methods. For this purpose, a formal model of psychophysical performance is used in which subjective duration is represented via a psychophysical function and the scalar property. This provides the timing component of the model, which is invariant across methods. A decisional component that varies across methods reflects how observers use subjective durations to make judgments and give the responses requested under each method. Application of the model shows that psychometric functions in single-presentation methods are uninterpretable because the various influences on observed performance are inextricably confounded in the data. In contrast, data gathered with paired-comparison methods permit separating out those influences. Prevalent approaches to fitting psychometric functions to data are also discussed and shown to be inconsistent with widely accepted principles of time perception, implicitly assuming instead that subjective time equals objective time and that observed differences across conditions do not reflect differences in perceived duration but criterion shifts. These analyses prompt evidence-based recommendations for best methodological practice in studies on time perception.