6 resultados para disordered
em Universidade Complutense de Madrid
Resumo:
We study the 3D Disordered Potts Model with p = 5 and p = 6. Our numerical simulations (that severely slow down for increasing p) detect a very clear spin glass phase transition. We evaluate the critical exponents and the critical value of the temperature, and we use known results at lower p values to discuss how they evolve for increasing p. We do not find any sign of the presence of a transition to a ferromagnetic regime.
Resumo:
We present the first detailed numerical study in three dimensions of a first-order phase transition that remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.
Resumo:
We present a detailed numerical study on the effects of adding quenched impurities to a three dimensional system which in the pure case undergoes a strong first order phase transition (specifically, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). We can state that the transition remains first-order in the presence of quenched disorder (a small amount of it) but it turns out to be second order as more impurities are added. A tricritical point, which is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the critical line. The results were made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that arise using the standard methodology. We also made use of a recently proposed microcanonical Monte Carlo method in which entropy, instead of free energy, is the basic quantity.
Resumo:
By performing a high-statistics simulation of the D = 4 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute to a high accuracy the complete set of critical exponents for this class, including the correction-to-scaling exponent. Our results indicate that in four dimensions (i) dimensional reduction as predicted by the perturbative renormalization group does not hold and (ii) three independent critical exponents are needed to describe the transition.
Resumo:
Considering the disorder caused in manganites by the substitution Mn→Fe or Ga, we accomplish a systematic study of doped manganites begun in previous papers. To this end, a disordered model is formulated and solved using the variational mean-field technique. The subtle interplay between double exchange, superexchange, and disorder causes similar effects on the dependence of T_(C) on the percentage of Mn substitution in the cases considered. Yet, in La_(2/3)Ca_(1/3)Mn_(1-y)Ga_(y)O_(3) our results suggest a quantum critical point (QCP) for y ≈ 0.1–0.2, associated to the localization of the electronic states of the conduction band. In the case of La_(x)Ca_(x)Mn_(1-y)Fe_(y)O_(3) (with x = 1/3,3/8) no such QCP is expected.
Resumo:
In this paper we analyze the structure of Fe-Ga layers with a Ga content of ∼30 at.% deposited by the sputtering technique under two different regimes. We also studied the correlation between the structure and magnetic behavior of the samples. Keeping the Ar pressure fixed, we modified the flow regime from ballistic to diffusive by increasing the distance between the target and the substrate. X-ray diffraction measurements have shown a lower structural quality when growing in the diffusive flow. We investigated the impact of the growth regime by means of x-ray absorption fine structure (XAFS) measurements and obtained signs of its influence on the local atomic order. Full multiple scattering and finite difference calculations based on XAFS measurements point to a more relevant presence of a disordered A2 phase and of orthorhombic Ga clusters on the Fe-Ga alloy deposited under a diffusive regime; however, in the ballistic sample, a higher presence of D0_3/B2 phases is evidenced. Structural characteristics, from local to long range, seem to determine the magnetic behavior of the layers. Whereas a clear in-plane magnetic anisotropy is observed in the film deposited under ballistic flow, the diffusive sample is magnetically isotropic. Therefore, our experimental results provide evidence of a correlation between flow regime and structural properties and its impact on the magnetic behavior of a rather unexplored compositional region of Fe-Ga compounds.