2 resultados para cytotoxic effect

em Universidade Complutense de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tagging of RNases, such as the ribotoxin α-sarcin, with the variable domains of antibodies directed to surface antigens that are selectively expressed on tumor cells endows cellular specificity to their cytotoxic action. A recombinant single-chain immunotoxin based on the ribotoxin α-sarcin (IMTXA33αS), produced in the generally regarded as safe (GRAS) yeast Pichia pastoris, has been recently described as a promising candidate for the treatment of colorectal cancer cells expressing the glycoprotein A33 (GPA33) antigen, due to its high specific and effective cytotoxic effect on in vitro assays against targeted cells. Here we report the in vivo antitumor effectiveness of this immunotoxin on nude mice bearing GPA33-positive human colon cancer xenografts. Two sets of independent assays were performed, including three experimental groups: control (PBS) and treatment with two different doses of immunotoxin (50 or 100 μg/ injection) (n = 8). Intraperitoneal administration of IMTXA33αS resulted in significant dose-dependent tumor growth inhibition. In addition, the remaining tumors excised from immunotoxin-treated mice showed absence of the GPA33 antigen and a clear inhibition of angiogenesis and proliferative capacity. No signs of immunotoxin-induced pathological changes were observed from specimens tissues.Overall these results show efficient and selective cytotoxic action on tumor xenografts, combined with the lack of severe side effects, suggesting that IMTXA33αS is a potential therapeutic agent against colorectal cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes andM¨uller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors.Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases.The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies.