3 resultados para coopération verticale en R
em Universidade Complutense de Madrid
Resumo:
La Simulación de Sucesos Discretos (SSD)es una metodología que permite aplicar los procedimientos de simulación estocástica, para representar un sistema en el que las variables aleatorias que lo componen están relacionadas entre si. En esta monografía se recogen distintos casos reales en los que puede aplicarse SSD junto con su implementación en R y resultados finales.
Resumo:
El análisis de datos actual se enfrenta a problemas derivados de la combinación de datos procedentes de diversas fuentes de información. El valor de la información puede enriquecerse enormemente facilitando la integración de nuevas fuentes de datos y la industria es muy consciente de ello en la actualidad. Sin embargo, no solo el volumen sino también la gran diversidad de los datos constituye un problema previo al análisis. Una buena integración de los datos garantiza unos resultados fiables y por ello merece la pena detenerse en la mejora de procesos de especificación, recolección, limpieza e integración de los datos. Este trabajo está dedicado a la fase de limpieza e integración de datos analizando los procedimientos existentes y proponiendo una solución que se aplica a datos médicos, centrándose así en los proyectos de predicción (con finalidad de prevención) en ciencias de la salud. Además de la implementación de los procesos de limpieza, se desarrollan algoritmos de detección de outliers que permiten mejorar la calidad del conjunto de datos tras su eliminación. El trabajo también incluye la implementación de un proceso de predicción que sirva de ayuda a la toma de decisiones. Concretamente este trabajo realiza un análisis predictivo de los datos de pacientes drogodependientes de la Clínica Nuestra Señora de la Paz, con la finalidad de poder brindar un apoyo en la toma de decisiones del médico a cargo de admitir el internamiento de pacientes en dicha clínica. En la mayoría de los casos el estudio de los datos facilitados requiere un pre-procesado adecuado para que los resultados de los análisis estadísticos tradicionales sean fiables. En tal sentido en este trabajo se implementan varias formas de detectar los outliers: un algoritmo propio (Detección de Outliers con Cadenas No Monótonas), que utiliza las ventajas del algoritmo Knuth-Morris-Pratt para reconocimiento de patrones, y las librerías outliers y Rcmdr de R. La aplicación de procedimientos de cleaning e integración de datos, así como de eliminación de datos atípicos proporciona una base de datos limpia y fiable sobre la que se implementarán procedimientos de predicción de los datos con el algoritmo de clasificación Naive Bayes en R.
Resumo:
El objetivo general de esta investigación fue medir, describir, relacionar y analizar las estrategias cognitivas, metacognitivas y contextuales así como la motivación hacia el aprendizaje de estudiantes universitarios mexicanos, y su relación con diversas variables educativas y socio-familiares como determinantes del rendimiento académico en la universidad, desde la teoría social-cognitiva del aprendizaje autorregulado. Mediante la aplicación y el análisis posterior de las bases de datos institucionales obtenidas del Examen Nacional de Ingreso al Nivel Superior (EXANI-II) y del Cuestionario de Contexto del Centro Nacional de Evaluación (CENEVAL) de los 1,140 estudiantes de licenciatura de la Universidad Autónoma de Yucatán (UADY) que respondieron el Cuestionario de Motivación y Estrategias de Aprendizaje (CMEA) diseñado a partir de la traducción, adaptación y validación del Motivated Strategies for Learning Questionnaire (MSLQ). El tipo de investigación seleccionada fue cuasiexperimental, descriptivo y correlacional-causal. Se realizó un análisis de frecuencias de las variables descriptivas, se calcularon los estadísticos descriptivos de los resultados en las sub-escalas del CMEA, y análisis de medias mediante la prueba t de Student para muestras no relacionadas y análisis de varianza. Finalmente, se calcularon los índices de correlación entre las variables educativas, socio-familiares, motivacionales, y de uso de estrategias y el rendimiento académico. Para evaluar la hipótesis general del ajuste del modelo teórico a los datos se utilizó el programa SPSS Amos 16 y el paquete sem 0.9-14 en R 2.8.0...