2 resultados para complex data

em Universidade Complutense de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reconfigurable HW can be used to build a hardware multitasking system where tasks can be assigned to the reconfigurable HW at run-time according to the requirements of the running applications. Normally the execution in this kind of systems is controlled by an embedded processor. In these systems tasks are frequently represented as subtask graphs, where a subtask is the basic scheduling unit that can be assigned to a reconfigurable HW. In order to control the execution of these tasks, the processor must manage at run-time complex data structures, like graphs or linked list, which may generate significant execution-time penalties. In addition, HW/SW communications are frequently a system bottleneck. Hence, it is very interesting to find a way to reduce the run-time SW computations and the HW/SW communications. To this end we have developed a HW execution manager that controls the execution of subtask graphs over a set of reconfigurable units. This manager receives as input a subtask graph coupled to a subtask schedule, and guarantees its proper execution. In addition it includes support to reduce the execution-time overhead due to reconfigurations. With this HW support the execution of task graphs can be managed efficiently generating only very small run-time penalties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies assume that socioeconomic status determines individuals’ states of health, but how does health determine socioeconomic status? And how does this association vary depending on contextual differences? To answer this question, our study uses an additive Bayesian Networks model to explain the interrelationships between health and socioeconomic determinants using complex and messy data. This model has been used to find the most probable structure in a network to describe the interdependence of these factors in five European welfare state regimes. The advantage of this study is that it offers a specific picture to describe the complex interrelationship between socioeconomic determinants and health, producing a network that is controlled by socio demographic factors such as gender and age. The present work provides a general framework to describe and understand the complex association between socioeconomic determinants and health.