3 resultados para cold shortening

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present Herschel PACS 100 and 160 μm observations of the solar-type stars α Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel open time key programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 μm for all three stars. HD 210277 also shows a small excess at 100 μm, while the 100 μm fluxes of α Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. Both α Men and HD 88230 are spatially resolved in the PACS 160 μm images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ~115 to ≤ 250 AU. The estimated black body temperatures from the 100 and 160 μm fluxes are ≲22 K, and the fractional luminosity of the cold dust is L_dust/L_⋆ ~ 10^-6, close to the luminosity of the solar-system’s Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars, so they cannot be explained easily invoking “classical” debris disc models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first far-IR observations of the solar-type stars δ Pav, HR 8501, 51 Peg and ζ^2 Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 μm fluxes from δ Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L_dust/L_* ~ 5 x 10^-7 (1σ level) around those stars. A flattened, disk-like structure with a semi-major axis of ~100 AU in size is detected around ζ2 Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L_dust/L_* ≈ 10^-5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cold climate anomaly about 8200 years ago is investigated with CLIMBER-2, a coupled atmosphere-ocean-biosphere model of intermediate complexity. This climate model simulates a cooling of about 3.6 K over the North Atlantic induced by a meltwater pulse from Lake Agassiz routed through the Hudson strait. The meltwater pulse is assumed to have a volume of 1.6 x 10^14 m^3 and a period of discharge of 2 years on the basis of glaciological modeling of the decay of the Laurentide Ice Sheet ( LIS). We present a possible mechanism which can explain the centennial duration of the 8.2 ka cold event. The mechanism is related to the existence of an additional equilibrium climate state with reduced North Atlantic Deep Water (NADW) formation and a southward shift of the NADW formation area. Hints at the additional climate state were obtained from the largely varying duration of the pulse-induced cold episode in response to overlaid random freshwater fluctuations in Monte Carlo simulations. The model equilibrium state was attained by releasing a weak multicentury freshwater flux through the St. Lawrence pathway completed by the meltwater pulse. The existence of such a climate mode appears essential for reproducing climate anomalies in close agreement with paleoclimatic reconstructions of the 8.2 ka event. The results furthermore suggest that the temporal evolution of the cold event was partly a matter of chance.